The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 129–133 | Cite as

Lattice Boltzmann simulation of electrowetting

  • H. Li
  • H. Fang


A numerical scheme based on the lattice Boltzmann method, which can simulate the electrowetting of an electrolyte droplet and flow is proposed. The accuracy and robustness of this model are demonstrated by numerically simulating a droplet on a flat surface, on which the cosine of contact angle shows parabolic increase consistent with the Lippmann-Young equation. This scheme is expected to the application in the study of the mechanism of electrowetting on dielectric and electrowetting fluid in complex geometry.


Contact Angle EUROPEAN Physical Journal Special Topic Lattice Boltzmann Method Contact Angle Hysteresis Metallic Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. Berge, C. R. Acad. Sci. II 317, 157 (1993)Google Scholar
  2. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)Google Scholar
  3. X.J. Gong, J.Y. Li, H.J. Lu, R.Z. Wan, J.C. Li, J. Hu, H.P. Fang, Nature Nanotechnol. 2, 709 (2007)Google Scholar
  4. V. Srinivasan, V.K. Pamula, R.B. Fair, Lab. Chip 4, 310 (2004)Google Scholar
  5. R.A. Hayes, B.J. Feenstra, Nature 425, 383 (2003)Google Scholar
  6. B. Berge, J. Peseux, Eur. Phys. J. E 3, 159 (2000)Google Scholar
  7. F. Mugele, J.C. Baret, J. Phys.: Condens. Matter 17, 705 (2005)Google Scholar
  8. Y.H. Qian, D. d'Humiéres, P. Lallemand, Europhys. Lett. 17, 479 (1992)Google Scholar
  9. S.Y. Chen, H.D. Chen, D.O. Martinez, W.H. Matthaeus, Phys. Rev. Lett. 67, 3776 (1991)Google Scholar
  10. X.W. Shan, H.D. Chen, Phys. Rev. E 47, 1815 (1993)Google Scholar
  11. A.G. Xu, G. Gonnella, A. Lamura, Physica A 331, 10 (2004)Google Scholar
  12. R.W. Mei, L.S. Luo, W. Shyy, J. Comp. Phys. 155, 307 (1999)Google Scholar
  13. H.B. Li, H.P. Fang, Z.F. Lin, S.X. Xu, S.Y. Chen, Phys. Rev. E 69, 031919 (2004)Google Scholar
  14. D. Marenduzzo, E. Orlandini, J.M. Yeomans, Phys. Rev. Lett. 92, 188301 (2004)Google Scholar
  15. J.M. Buick, et al., Biomed. Pharma. 56, 345 (2002)Google Scholar
  16. H.P. Fang, Z.W. Wang, Z.F. Lin, M.R. Liu, Phys. Rev. E 65, 051925 (2002)Google Scholar
  17. L. Axner, A.G. Hoekstra, P.M.A. Sloot, Phys. Rev. E 75, 036709 (2007)Google Scholar
  18. H.B. Li, H.H. Yi, X.W. Shan, H.P. Fang, Europhys. Lett. 81, 54002 (2008)Google Scholar
  19. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, F. Toschi, Phys. Rev. Lett. 97, 204503 (2006)Google Scholar
  20. B.M. Li, D.Y. Kwok, Phys. Rev. Lett. 90, 1245021 (2003)Google Scholar
  21. X.W. Shan, H.D. Chen, Phys. Rev. E 49, 2941 (1994)Google Scholar
  22. J.D. Kraus, Electromagnetics (McGraw-Hill, 1992)Google Scholar
  23. B. Janocha, H. Bauser, C. Oehr, H. Brunner, W. Göpel, Langmuir 16, 3349 (2000)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Department of Information Material Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghaiChina
  3. 3.Theoretical Physics Center for Science Facilities (TPCSF), CAS, 19(B) Yuquan RoadBeijingChina

Personalised recommendations