Skip to main content
Log in

Simulating thermohydrodynamics by finite difference solutions of the Boltzmann equation

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The formulation of a consistent thermohydrodynamics with a discrete model of the Boltzmann equation requires the representation of the velocity moments up to the fourth order. Space-filling discrete sets of velocities with increasing accuracy were obtained using a systematic approach in accordance with a quadrature method based on prescribed abscissas (Philippi et al., Phys. Rev. E, 73 (5), n. 056702, 2006). These sets of velocities are suitable for collision-propagation schemes, where the discrete velocity and physical spaces are coupled and the Courant number is unitary. The space-filling requirement leads to sets of discrete velocities which can be large in thermal models. In this work, although the discrete sets of velocities are also obtained with a quadrature method based on prescribed abscissas, the lattices are not required to be space-filling. This leads to a reduced number of discrete velocities for the same approximation order but requires the use of an alternative numerical scheme. The use of finite difference schemes for the advection term in the continuous Boltzmann equation has shown to have some advantages with respect to the collision-propagation LBM method by freeing the Courant number from its unitary value and reducing the discretization error. In this work, a second order Runge-Kutta method was used for the simulation of the Sod's shock tube problem, the Couette flow and the Lid-driven cavity flow. Boundary conditions without velocity slip and temperature jumps were written for these discrete Boltzmann equation by splitting the velocity distribution function into an equilibrium and a non-equilibrium part. The equilibrium part was set using the local velocity and temperature at the wall and the non-equilibrium part by extrapolating the non-equilibrium moments to the wall sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Y.H. Qian, D. d'Humières, P. Lallemand, Europhys. Lett. 17, 479 (1992)

    Google Scholar 

  • P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Google Scholar 

  • G. McNamara, B. Alder, Physica A 194, 218 (1993)

    Google Scholar 

  • X. Shan, X. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)

    Google Scholar 

  • F.J. Alexander, S. Chen, J.D. Sterling, Phys. Rev. E 47, R2249 (1993)

  • Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50, 2776 (1994)

    Google Scholar 

  • P.C. Philippi, L.A. Hegele Jr., L.O.E. dos Santos, R. Surmas, Phys. Rev. E 73, 056702 (2006)

    Google Scholar 

  • P.C. Philippi, L.A. Hegele Jr., R. Surmas, D.N. Siebert, L.O.E. dos Santos, Int. J. Mod. Phys. C 18, 556 (2007)

    Google Scholar 

  • D.N. Siebert, L.A. Hegele Jr., R. Surmas, L.O.E. dos Santos, P.C. Philippi, Int. J. Mod. Phys. C 18, 546 (2007)

    Google Scholar 

  • P. Pavlo, G. Vahala, L. Vahala, Phys. Rev. Lett. 80, 3960 (1998)

    Google Scholar 

  • M. Watari, M. Tsutahara, Phys. Rev. E 70, 016703 (2004)

    Google Scholar 

  • C.E. Pico, L.O.E. dos Santos, P.C. Philippi, Int. J. Mod. Phys. C 18, 566 (2007)

    Google Scholar 

  • R. Cools, J. Complex. 19, 445 (2003)

    Google Scholar 

  • G.A. Sod, J. Comput. Phys. 27, 1 (1978)

    Google Scholar 

  • C. Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988)

  • S.S. Chikatamarla, I.V. Karlin, Phys. Rev. Lett. 97, 190601 (2006)

    Google Scholar 

  • A.H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, Englewood Cliffs, 1971)

  • A. Haegemans, Tables of circularly symmetrical integration formulas of degree 2d-1 for two-dimensional circulatory symmetrical regions (Report TW 27, K.U. Leuven Applied Mathematics and Programming Division, 1975)

  • C.E. Pico, Aplicação das formas discretas da equação de Boltzmann à termo-hidrodinâmica de misturas, Ph.D. thesis, UFSC, Florianópolis, 2007

  • F. Mantel, P. Rabinowitz, SIAM J. Numer. Anal. 14, 391 (1977)

    Google Scholar 

  • U. Ghia, K.N. Ghia, C.T. Shin, J. Comput. Phys. 48, 387 (1982)

    Google Scholar 

  • V. Sofonea, R.F. Sekerka, J. Comput. Phys. 184, 422 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Surmas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surmas, R., Pico Ortiz, C. & Philippi, P. Simulating thermohydrodynamics by finite difference solutions of the Boltzmann equation. Eur. Phys. J. Spec. Top. 171, 81–90 (2009). https://doi.org/10.1140/epjst/e2009-01014-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-01014-x

Keywords

Navigation