The European Physical Journal Special Topics

, Volume 168, Issue 1, pp 149–177 | Cite as

Non-equilibrium in cosmology



All the non-trivial features of the Universe we see around us, such as particles, stars, galaxies, and clusters of galaxies, are the result of non-equilibrium processes in the cosmic evolution. These lectures aim to provide some general background in cosmology and to examine specific, and notable, examples of departures from thermal equilibrium. They are organized as follows: 1) Overview of the thermal history of the Universe after the Big Bang: the relevant time-scales and the mechanism of particle decoupling from the themal bath; 2) Explicit examples of cosmic relics: nucleosynthesis, photons and the cosmic microwave background, neutrinos, and cold dark matter; 3) Baryogenesis: the generation of the baryon asymmetry of the Universe; 4) The formation of cosmic structures (galaxies, clusters of galaxies): from the Vlasov equation to the renormalization group.


Renormalization Group Boltzmann Equation European Physical Journal Special Topic Cosmic Microwave Background Renormalization Group Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. SDSS Collaboration, M. Tegmark, et al., Phys. Rev. D 74, 123507 (2006) [astro-ph/0608632]Google Scholar
  2. C.L. Bennett, et al., Astrophys. J. 464, L1 (1996) [astro-ph/9601067]Google Scholar
  3. Supernova Search Team Collaboration, A.G. Riess, et al., Astron. J. 116, 1009 (1998) [astro-ph/9805201]Google Scholar
  4. Supernova Cosmology Project Collaboration, S. Perlmutter, et al., Astrophys. J. 517, 565 (1999) [astro-ph/9812133]Google Scholar
  5. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, 1990)Google Scholar
  6. S. Dodelson, Modern Cosmology (Academic Press, 2003)Google Scholar
  7. Particle Data Group Collaboration, C. Amsler, et al., Phys. Lett. B 667, 1 (2008)Google Scholar
  8. WMAP Collaboration, E. Komatsu, et al., Five-Year Wilkinson Microwave Anisotropy Probe Observations: cosmological Interpretation [0803.0547]Google Scholar
  9. G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005) [hep-ph/0404175]Google Scholar
  10. A.G. Cohen, A. De Rujula, S.L. Glashow, Astrophys. J. 495, 539 (1998) [astro-ph/9707087]Google Scholar
  11. P. Arnold, L.D. McLerran, Phys. Rev. D 36, 581Google Scholar
  12. P. Arnold, D. Son, L.G. Yaffe, Phys. Rev. D 55, 6264 (1997) [hep-ph/9609481]Google Scholar
  13. A. Riotto, M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999) [hep-ph/9901362]Google Scholar
  14. G.F. Giudice, Phys. Rev. D 45, 3177 (1992)Google Scholar
  15. M. Pietroni, Nucl. Phys. B 402, 27 (1993) [hep-ph/9207227]Google Scholar
  16. M.S. Carena, M. Quiros, M. Seco, C.E.M. Wagner, Nucl. Phys. B 650, 24 (2003) [hep-ph/0208043]Google Scholar
  17. S.J. Huber, T. Konstandin, T. Prokopec, M.G. Schmidt, Nucl. Phys. B 757, 172 (2006) [hep-ph/0606298]Google Scholar
  18. W. Buchmuller, R.D. Peccei, T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005) [hep-ph/0502169]Google Scholar
  19. D.J. Eisenstein, W. Hu, M. Tegmark, Astrophys. J. 504, L57 (1998) [astro-ph/9805239]Google Scholar
  20. H.-J. Seo, D.J. Eisenstein, Astrophys. J. 598, 720 (2003) [astro-ph/0307460]Google Scholar
  21. SDSS Collaboration, D.J. Eisenstein, et al., Astrophys. J. 633, 560 (2005) [astro-ph/0501171]Google Scholar
  22. G. Huetsi, Astron. Astrophys. 449, 891 (2006) [astro-ph/0512201]Google Scholar
  23. SDSS Collaboration, N. Padmanabhan, et al., Mon. Not. Roy. Astron. Soc. 378, 852 (2007) [astro-ph/0605302]Google Scholar
  24. C. Blake, A. Collister, S. Bridle, O. Lahav [astro-ph/0605303]Google Scholar
  25. G.J. Hill, et al., The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): Description and Early Pilot Survey Results [0806.0183]Google Scholar
  26. K. Glazebrook, D. Eisenstein, A. Dey, B. Nichol, Dark Energy and Cosmic Sound: w(z) Surveys with the Gemini/Subaru Wide-Field Multi-Object Spectrograph [astro-ph/0507457]Google Scholar
  27. E. Huff, A.E. Schulz, M.J. White, D.J. Schlegel, M.S. Warren, Astropart. Phys. 26, 351 (2007) [astro-ph/0607061]Google Scholar
  28. H.-J. Seo, E.R. Siegel, D.J. Eisenstein, M. White, Non-linear structure formation and the acoustic scale [0805.0117]Google Scholar
  29. R. Takahashi, et al., Simulations of Baryon Acoustic Oscillations I: Growth of Large-Scale Density Fluctuations [0802.1808]Google Scholar
  30. D. Jeong, E. Komatsu, Astrophys. J. 651, 619 (2006) [astro-ph/0604075]Google Scholar
  31. D. Jeong, E. Komatsu, Perturbation Theory Reloaded II: Non-linear Bias, Baryon Acoustic Oscillations and Millennium Simulation [0805.2632]Google Scholar
  32. F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Phys. Rept. 367, 1 (2002) [astro-ph/0112551]Google Scholar
  33. J.A. Peacock, S.J. Dodds, Mon. Not. Roy. Astron. Soc. 280, L19 (1996) [astro-ph/9603031]Google Scholar
  34. The Virgo Consortium Collaboration, R.E. Smith, et al., Mon. Not. Roy. Astron. Soc. 341, 1311 (2003) [astro-ph/0207664]Google Scholar
  35. E. Calzetta, B.L. Hu, Phys. Rev. D 37, 2878 (1988)Google Scholar
  36. M. Crocce, R. Scoccimarro, Phys. Rev. D 73, 063519 (2006) [astro-ph/0509418]Google Scholar
  37. M. Crocce, R. Scoccimarro, Phys. Rev. D 73, 063520 (2006) [astro-ph/0509419]Google Scholar
  38. S. Matarrese, M. Pietroni, JCAP 0706, 026 (2007) [astro-ph/0703563]Google Scholar
  39. A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473 (2000) [astro-ph/9911177]Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.INFN, Sezione di Padova, via Marzolo 8PadovaItaly

Personalised recommendations