The European Physical Journal Special Topics

, Volume 167, Issue 1, pp 121–126 | Cite as

The utility of resonant soft x-ray scattering and reflectivity for the nanoscale characterization of polymers

  • S. Swaraj
  • C. Wang
  • T. Araki
  • G. Mitchell
  • L. Liu
  • S. Gaynor
  • B. Deshmukh
  • H. Yan
  • C. R. McNeill
  • H. Ade
Regular Article

Abstract

The utility of resonant soft x-ray scattering (RSoXS) and reflectivity (RSoXR) is extended and exemplified through the characterization of thin films of polymers relevant to organic solar cells and of dilute polymer solutions. RSoXS and RSoXR are methods that utilize anomalous scattering principles at soft x-ray energies. Soft X-rays cover the carbon, nitrogen and oxygen absorption edges, elements very relevant for polymers and colloids. The rapid changes of optical properties near these absorption edges provide selectivity to specific moieties and high contrast. RSoXR is shown to be a powerful tool for the characterization of bilayers of conducting polymers. The RSoXR results point to an interesting strategy that will allow the chemical interdiffusion and physical roughness at a buried polymer/polymer interface to be determined independently. The high scattering cross sections also allows the investigation of thin films of conjugated polymer blends in transmission at thicknesses for which hard X-rays or neutrons would yield relatively little scattering. By scattering at photon energies that provide strong scattering contrast, even very dilute polymeric solutions yield a useable signal.

Keywords

European Physical Journal Special Topic Organic Solar Cell Dilute Polymer Solution Material Contrast Silicon Frame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, S. Williams, Science 258, 972 (1992) Google Scholar
  2. H. Ade, B. Hsiao, Science 262, 1427 (1993) Google Scholar
  3. H. Ade, A.P. Hitchcock, Polymer 49, 643 (2008) Google Scholar
  4. A.L.D. Kilcoyne, T. Tyliszczak, W.F. Steele, S. Fakra, P. Hitchcock, K. Franck, et al., J. Synchrotr. Radiat. 10, 125 (2003) Google Scholar
  5. C.R. McNeill, B. Watts, L. Thomsen, H. Ade, N.C. Greenham, P.C. Dastoor, Macromolecules 40, 3263 (2007) Google Scholar
  6. C.R. McNeill, B. Watts, L. Thomsen, W. Belcher, S. Swaraj, H. Ade, P.C. Dastoor, Nanotechnology 19, 424015 (2008) Google Scholar
  7. M.L. Chabinyc, Polym. Rev. 48, 463 (2008) Google Scholar
  8. G.E. Mitchell, B.G. Landes, J. Lyons, B.J. Kern, M.J. Devon, I. Koprinarov, E.M. Gullikson, J.B. Kortright, Appl. Phys. Lett. 89, 044101 (2006) Google Scholar
  9. T. Araki, H. Ade, J.M. Stubbs, D.C. Sundberg, G. Mitchell, A.L.D. Kilcoyne, Appl. Phys. Lett. 89, 124106 (2006) Google Scholar
  10. J.M. Virgili, Y.F. Tao, J.B. Kortright, N.P. Balsara, R.A. Segalman, Macromolecules 40, 2092 (2007) Google Scholar
  11. C.F. Welch, R.P. Hjelm, J.T. Mang, D.A. Wrobleski, E.B. Orler, M.E. Hawley, J.B. Kortright, Polym. Mater. Sci. & Eng. 93, 289 (2005) Google Scholar
  12. O.H. Seeck, I.D. Kaendler, M. Tolan, M. Shin, M.H. Rafailovich, J. Sokolov, R. Kolb, Appl. Phys. Lett. 76, 2713 (2000) Google Scholar
  13. C. Wang, T. Araki, B. Watts, S. Harton, T. Koga, S. Basu, H. Ade, J. Vac. Sci. Technol. A 25, 575 (2007) Google Scholar
  14. C. Wang, T. Araki, H. Ade, Appl. Phys. Lett. 87, 214109 (2005) Google Scholar
  15. E. Moons, J. Phys. Condens. Matter. 14, 12235 (2002) Google Scholar
  16. H. Hoppe, N.S. Sariciftci, J. Mater. Chem. 16, 45 (2006) Google Scholar
  17. J.H. Underwood, E.M. Gullikson, J. Electron Spectrosc. Relat. Phenom. 92, 265 (1998) Google Scholar
  18. O. Dhez, H. Ade, S. Urquhart, J. Electron Spectrosc. Relat. Phenom. 128, 85 (2003) Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • S. Swaraj
    • 1
  • C. Wang
    • 1
    • 2
  • T. Araki
    • 1
  • G. Mitchell
    • 3
  • L. Liu
    • 3
  • S. Gaynor
    • 3
  • B. Deshmukh
    • 3
  • H. Yan
    • 1
  • C. R. McNeill
    • 4
  • H. Ade
    • 1
  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  2. 2.Advanced Light Source, Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.The Dow Chemical CompanyMidlandUSA
  4. 4.Department of Physics, University of CambridgeCavendish LaboratoryCambridgeUK

Personalised recommendations