Advertisement

The European Physical Journal Special Topics

, Volume 167, Issue 1, pp 53–58 | Cite as

Crystalline structure of oxide-based epitaxial tunnel junctions

The effect of optical lithography studied by X-ray microdiffraction
  • C. Mocuta
  • A. Barbier
  • A. V. Ramos
  • M.-J. Guittet
  • J.-B. Moussy
  • S. Stanescu
  • C. Gatel
  • R. Mattana
  • C. Deranlot
  • F. Petroff
Regular Article

Abstract

Epitaxial metal/oxide based magnetic tunnel-junctions (MTJ) are valuable model systems to investigate the influence of the crystallinity of individual layers on the magnetic properties. We have non-destructively studied the effect of the optical lithography procedure on the crystalline structure of MTJ’s with lateral spatial resolution by performing local x-ray diffraction experiments using a microfocused x-ray spot. We demonstrate that the lithography process produces distortion effects on the crystalline structure of the layers near the edges of the lithographed junction. These distortions are present on all the constituent layers and are most probably driven by the elastic constants of the materials. They translate into tilts of the crystalline planes in the vicinity of the edges and propagate towards the center of the junction; the tilt’s amplitude (up to several degrees) and sign (concave or convex) depend on the junction’s shape, size and the type of materials (interfaces) used. We report results for junctions made with two types of metal-oxide interfaces (Co/CoFe2O4 and Co/Fe3O4), with sizes from 10 to 150 μm and various shapes (square-, rectangle- and disk-like).

Keywords

European Physical Journal Special Topic Crystalline Plane Lithography Process European Synchrotron Radiation Facility Optical Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Moodera, T.S. Santos, T. Nagahama, J. Phys.: Condens. Matter. 19, 165202 (2007) Google Scholar
  2. A. Fert, A. Barthélémy, F. Petroff, in Spin Transport in Magnetic Multilayers and Tunnel Junctions, edited by J.A.C. Bland, D.L. Mills (Elsevier, Amsterdam, The Netherlands, 2006) Google Scholar
  3. J.M. De Theresa, A. Barthélémy, A. Fert, J.P. Contour, F. Montaigne, P. Seneor, Science 286, 507 (1999) Google Scholar
  4. N. Tamura, R.S. Celestre, A.A. MacDowell, H.A. Padmore, R. Spolenak, B.C. Valek, N.M. Chang, A. Manceau, J.R. Patel, Rev. Sci. Instrum. 73, 1369 (2002) Google Scholar
  5. J.D. Budai, W.G. Yang, N. Tamura, J.S. Chung, J.Z. Tischler, B.C. Larson, G.E. Ice, C. Park, D.P. Norton, Nature Mater. 2, 487 (2003) Google Scholar
  6. C. Mocuta, A. Barbier, A.V. Ramos, M.-J. Guittet, J.-B. Moussy, S. Stanescu, R. Mattana, C. Deranlot, F. Petroff, Appl. Phys. Lett. 91, 241917 (2007) Google Scholar
  7. A. Barbier, O. Bezencenet, C. Mocuta, J.-B. Moussy, H. Magnan, N. Jedrecy, M.-J. Guittet, M. Gautier-Soyer, Mat. Sci. Eng. B 144, 19 (2007) and references therein Google Scholar
  8. Y. Gao, S.A. Chambers, J. Cryst. Growth 174, 446 (1997) Google Scholar
  9. J.-B. Moussy, S. Gota, A. Bataille, M.-J. Guittet, M. Gautier-Soyer, F. Delille, B. Dieny, F. Ott, T.D. Doan, P. Warin, P. Bayle-Guillemaud, C. Gatel, E. Snoeck, Phys. Rev. B 70, 17448 (2004) Google Scholar
  10. S. Gota, E. Guitot, M. Henriot, M. Gautier-Soyer, Phys. Rev. B 60, 14387 (1999); Surf. Sci. 454-456, 796 (2000) Google Scholar
  11. M. Bowen, M. Bibes, A. Barthélémy, J.-P. Contour, A. Anane, Y. Lema\(\hat{\i}\)tre, A. Fert, Appl. Phys. Lett. 82, 233 (2003) Google Scholar
  12. A.M. Bataille, Ph.D thesis, Université Paris XI, Orsay, 2005 Google Scholar
  13. A.V. Ramos, J.B. Moussy, M.J. Guittet, M. Gautier-Soyer, C. Gatel, P. Bayle-Guillemaud, B. Warot-Fonrose, E. Snoeck, Phys. Rev. B 75, 224421 (2007) Google Scholar
  14. A.M. Bataille, J.-B. Moussy, F. Paumier, S. Gota, M.-J. Guittet, M. Gautier-Soyer, P. Warin, P. Bayle-Guillemaud, P. Seneor, K. Bouzehouane, F. Petroff, Appl. Phys. Lett. 86, 012509 (2005) Google Scholar
  15. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature (London) 384, 49 (1996) Google Scholar
  16. B. Lengeler, C.G. Schroer, M. Richwin, J. Tümmler, M. Drakopoulos, A. Snigirev, I. Snigireva, Appl. Phys. Lett. 74, 3924 (1999) Google Scholar
  17. C. Mocuta, J. Stangl, K. Mundboth, T.H. Metzger, G. Bauer, I. Vartanyants, M. Schmidbauer, T. Boeck, Phys. Rev. B 77, 245425 (2008) Google Scholar
  18. For sample 1 (50×50μm2 junction only), the data corresponding to negative coordinates were symmetrized from the right half of the figure, see also Ref. Mocuta2007 Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • C. Mocuta
    • 1
  • A. Barbier
    • 2
  • A. V. Ramos
    • 2
  • M.-J. Guittet
    • 2
  • J.-B. Moussy
    • 2
  • S. Stanescu
    • 3
  • C. Gatel
    • 4
  • R. Mattana
    • 5
  • C. Deranlot
    • 5
  • F. Petroff
    • 5
  1. 1.European Synchrotron Radiation Facility, BP. 220GrenobleFrance
  2. 2.CEA-SaclayGif-sur-YvetteFrance
  3. 3.Synchrotron SOLEIL, Saint-Aubin, BP. 48Gif-sur-Yvette CedexFrance
  4. 4.Centre d’Élaboration des Matériaux et d’Études Structurales, CNRSToulouseFrance
  5. 5.Unité Mixte de Physique CNRS/Thales, Route Départementale 128, 91767 Palaiseau Cedex and Université Paris-Sud 11OrsayFrance

Personalised recommendations