Skip to main content
Log in

Dipolar interactions and constant dielectric loss spectra

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Frequency-independent dielectric loss spectra constitute an ubiquitous phenomenon in strongly disordered materials. The degree of universality of this effect calls for a microscopic model that takes into account interactions and structural disorder, but otherwise requires only minimal assumptions. Under this point of view we review and further investigate the cooperative relaxation behaviour in an assembly of defect centres at frozen random positions. These centres carry an internal dipolar degree of freedom and interact by dipole-dipole forces. Such a description essentially amounts to studying the cooperative dynamics of interacting “asymmetric double well potential” (ADWP)-like centres, without invoking an ad hoc barrier distribution. Kinetic Monte Carlo simulations of an associated random dipolar lattice model show a transition from Debye to constant dielectric loss behaviour upon lowering the temperature. These results are interpreted with the help of analytic theories that focus on slow relaxation within strongly interacting nearest neighbour pairs of defects. Finally, a collective mode representation of the dielectric response derived from stochastic field theory is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.K. Jonscher, Nature 267, 673 (1977)

  • K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Google Scholar 

  • J.C. Dyre, T.B. Schröder, Rev. Mod. Phys. 72, 873 (2000)

    Google Scholar 

  • W. Dieterich, P. Maass, Chem. Phys. 284, 439 (2002)

    Google Scholar 

  • A. Bunde, W. Dieterich, P. Maass, M. Meyer, in Diffusion in Condensed Matter – Methods, Materials, Models, edited by P. Heitjans, J. Kärger (Springer-Verlag, Berlin, Heidelberg, 2005), p. 813

  • P. Maass, J. Petersen, A. Bunde, W. Dieterich, H.E. Roman, Phys. Rev. Lett. 66, 52 (1991)

    Google Scholar 

  • M. Porto, P. Maass, M. Meyer, A. Bunde, W. Dieterich, Phys. Rev. B 61, 8057 (2000)

    Google Scholar 

  • D. Knödler, P. Pendzig, W. Dieterich, Solid State Ionics 86-88, 29 (1996)

    Google Scholar 

  • B. Roling, Phys. Chem. Chem. Phys. 3, 5093 (2001)

    Google Scholar 

  • W.K. Lee, J.F. Liu, A.S. Nowick, Phys. Rev. Lett. 67, 1559 (1991)

    Google Scholar 

  • A.S. Nowick, B.S. Lim, A.V. Vaysleb, J. Non-Cryst. Solids 172-174, 1243 (1994)

    Google Scholar 

  • X. Lu, H. Jain, J. Phys. Chem. Solids 55, 1433 (1994)

    Google Scholar 

  • K.L. Ngai, J. Chem. Phys. 110, 10576 (1999)

    Google Scholar 

  • D.L. Sidebottom, C.M. Murray-Krezan, Phys. Rev. Lett. 89, 195901 (2002)

    Google Scholar 

  • A.S. Nowick, Solid State Ionics 136-137, 1307 (2000)

    Google Scholar 

  • A. Pimenov, J. Ullrich, P. Lunkenheimer, A. Loidl, C.H. Rüscher, Solid State Ionics 109, 111 (1998)

    Google Scholar 

  • P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 91, 207601 (2003)

    Google Scholar 

  • C. Cramer, Ber. Bunsenges. Phys. Chem. 100, 1497 (1996)

    Google Scholar 

  • A.S. Nowick and coworkers [10, 11] have termed the NCL-response as “second universality”, to be distinguished from the “universal” appearance of sublinear power laws [1] in the response at ambient temperatures and frequencies ω≃106s-1

  • R. Peibst, S. Schott, P. Maass, Phys. Rev. Lett. 95, 115901 (2005); P. Maass, R. Peibst, J. Non-Cryst. Solids 352, 5178 (2006)

    Google Scholar 

  • M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)

    Google Scholar 

  • K.S. Gilroy, W.A. Phillips, Phil. Mag. B 43, 735 (1981)

    Google Scholar 

  • P. Heitjans, W. Faber, A. Schirmer, J. Non-Cryst. Solids 131-133, 1053 (1991)

    Google Scholar 

  • J. Dieckhöfer, O. Kanert, R. Küchler, A. Volmari, J. Jain, Phys. Rev. B 55, 1 (1997)

    Google Scholar 

  • H. Jain, Met. Mater. Proc. 11, 317 (1999)

    Google Scholar 

  • H. Jain, S. Krishnaswami, O. Kanert, J. Non-Cryst. Solids 307-310, 1017 (2002)

    Google Scholar 

  • C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaria, K.L. Ngai, Phys. Rev. Lett. 86, 1297 (2001)

    Google Scholar 

  • J. Habasaki, K.L. Ngai, Y. Hiwatari, Phys. Rev. E 66, 021205 (2002)

    Google Scholar 

  • P. Pendzig, W. Dieterich, Solid State Ionics 105, 209 (1998)

    Google Scholar 

  • B. Roling, C. Martiny, S. Murugavel, Phys. Rev. Lett. 87, 085901 (2001)

    Google Scholar 

  • K. Funke, R.D. Banhatti, C. Cramer, Phys. Chem. Chem. Phys. 7, 157 (2005)

    Google Scholar 

  • O. Kanert, R. Küchler, J. Dieckhöfer, X. Lu, H. Jain, Phys. Rev. B 49, 629 (1994)

    Google Scholar 

  • T. Blochowitz, A. Kudlik, S. Benkhof, J. Senker, E. Rössler, J. Chem. Phys. 110, 12011 (1999)

    Google Scholar 

  • T. Höhr, P. Pendzig, W. Dieterich, P. Maass, Phys. Chem. Chem. Phys. 4, 3168 (2002)

    Google Scholar 

  • B. Rinn, W. Dieterich, P. Maass, Phil. Mag. B 77, 1283 (1998)

    Google Scholar 

  • P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Google Scholar 

  • M. Schulz, W. Dieterich, P. Maass, Z. Phys. Chem. 218, 1375 (2004)

    Google Scholar 

  • Y.J. Uemura, T. Yamazaki, D.R. Harshman, M. Senba, E.J. Ansaldo, Phys. Rev. B 31, 546 (1985)

    Google Scholar 

  • When considering the secular part \({\bf m}_i/r_i^3\) of the dipolar fields only, one obtains \(C_W=\pi^2/3\cong3.29\), and inclusion of the non-secular part \(-3({\bf m}_i\cdot{\bf r}_i){\bf r}_i/r_i^5\) gives \(C_W=(\pi^2/3)[1+(2\sqrt{3})^{-1}{\rm arcsinh}\sqrt{3}]\cong4.54\) [40]

  • F. Scheffler, P. Maass, Europhys. Lett. 62, 439 (2003)

    Google Scholar 

  • P. Maass, F. Scheffler, Physica A 314, 200 (2002)

    Google Scholar 

  • R. Kubo, T. Toyabe, in Magnetic Resonance and Relaxation, edited by R. Blinč (North-Holland, Amsterdam, 1967), p. 810

  • T.J. Jackson, C. Binns, E.M. Forgan, E. Morenzoni, Ch. Niedermayer, H. Glückler, A. Hofer, H. Luetkens, T. Prokscha, T.M. Riseman, A. Schatz, M. Birke, J. Litterst, G. Schatz, H.P. Weber, J. Phys.: Cond. Matter 12, 1399 (2000)

    Google Scholar 

  • J. Garciá-Otero, M. Porto, J. Rival, A. Bunde, Phys. Rev. Lett. 84, 167 (2000)

    Google Scholar 

  • M. Ulrich, J. Garciá-Otero, J. Rivas, A. Bunde, Phys. Rev. B 67, 024416 (2003)

    Google Scholar 

  • S. Russ, A. Bunde, Phys. Rev. B 75, 174445 (2007)

    Google Scholar 

  • M. Albrecht, A. Maier, F. Treubel, M. Maret, P. Poinsot, G. Schatz, Europhys. Lett. 62, 884 (2001)

    Google Scholar 

  • S. Heinrichs, W. Dieterich, P. Maass, Phys. Rev. B 75, 085437 (2007)

    Google Scholar 

  • U.T. Höchli, K. Knorr, A. Loidl, Adv. Phys. 39, 605 (1990)

    Google Scholar 

  • B.E. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990)

    Google Scholar 

  • S.H.L. Klapp, J. Phys.: Cond. Matter 17, R525 (2005)

  • W.A. Phillips, Rep. Progr. Phys. 50, 1675 (1987)

    Google Scholar 

  • C.C. Yu, A. Leggett, Comments Cond. Mat. Phys. 14, 231 (1988)

    Google Scholar 

  • M.W. Klein, Phys. Rev. B 45, 5209 (1992)

    Google Scholar 

  • A. Würger, Springer Tracts in Modern Physics, Vol. 135 (Springer, Berlin, 1996)

  • R. Kühn, U. Horstmann, Festkörperprobleme/Adv. Solid State Phys. 38, 425 (1999)

    Google Scholar 

  • H. Lammert, M. Kumow, A. Heuer, Phys. Rev. Lett. 90, 215901 (2003)

    Google Scholar 

  • P. Maass, W. Dieterich, F. Scheffler, in Flow Dynamics: The 2nd Int. Conf. on Flow Dynamics, edited by M. Tokuyama, S. Maruyama, AIP Conf. Proc. 832, 492 (Melville, New York, 2006)

  • When fitting the long-time decay to eq. (16), one has to take into account an apparent non-vanishing Edwards-Anderson parameter \([\langle{\bf p}\rangle^2]_{\rm av}\). However, investigations for different system sizes with extensive parallel tempering procedures did not provide a conclusive answer with respect to the possible occurrence of spin glass behaviour

  • S.D. Druger, M.A. Ratner, A. Nitzan, Phys. Rev. B 31, 3939 (1985)

    Google Scholar 

  • Asymtotically for low ω we expect the slope unity again to appear, but at low θ such frequencies were inaccessible by our simulations

  • J.M. Luttinger, L. Tisza, Phys. Rev. 70, 954 (1946)

    Google Scholar 

  • H. Grille et al. (to be published)

  • T. Höhr, Diploma thesis, University of Konstanz, 2000, http://www.ub.uni-konstanz.de/kops/volltexte/2000/585

  • W. Dieterich, P. Maass, Solid State Ionics (2008) (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dieterich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieterich, W., Maass, P. & Schulz, M. Dipolar interactions and constant dielectric loss spectra. Eur. Phys. J. Spec. Top. 161, 79–96 (2008). https://doi.org/10.1140/epjst/e2008-00752-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2008-00752-5

Keywords

Navigation