Dipolar interactions and constant dielectric loss spectra

  • W. Dieterich
  • P. Maass
  • M. Schulz


Frequency-independent dielectric loss spectra constitute an ubiquitous phenomenon in strongly disordered materials. The degree of universality of this effect calls for a microscopic model that takes into account interactions and structural disorder, but otherwise requires only minimal assumptions. Under this point of view we review and further investigate the cooperative relaxation behaviour in an assembly of defect centres at frozen random positions. These centres carry an internal dipolar degree of freedom and interact by dipole-dipole forces. Such a description essentially amounts to studying the cooperative dynamics of interacting “asymmetric double well potential” (ADWP)-like centres, without invoking an ad hoc barrier distribution. Kinetic Monte Carlo simulations of an associated random dipolar lattice model show a transition from Debye to constant dielectric loss behaviour upon lowering the temperature. These results are interpreted with the help of analytic theories that focus on slow relaxation within strongly interacting nearest neighbour pairs of defects. Finally, a collective mode representation of the dielectric response derived from stochastic field theory is presented.


European Physical Journal Special Topic Solid State Ionic Defect Centre Dielectric Susceptibility Barrier Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.K. Jonscher, Nature 267, 673 (1977) Google Scholar
  2. K. Funke, Prog. Solid State Chem. 22, 111 (1993) Google Scholar
  3. J.C. Dyre, T.B. Schröder, Rev. Mod. Phys. 72, 873 (2000) Google Scholar
  4. W. Dieterich, P. Maass, Chem. Phys. 284, 439 (2002) Google Scholar
  5. A. Bunde, W. Dieterich, P. Maass, M. Meyer, in Diffusion in Condensed Matter – Methods, Materials, Models, edited by P. Heitjans, J. Kärger (Springer-Verlag, Berlin, Heidelberg, 2005), p. 813 Google Scholar
  6. P. Maass, J. Petersen, A. Bunde, W. Dieterich, H.E. Roman, Phys. Rev. Lett. 66, 52 (1991) Google Scholar
  7. M. Porto, P. Maass, M. Meyer, A. Bunde, W. Dieterich, Phys. Rev. B 61, 8057 (2000) Google Scholar
  8. D. Knödler, P. Pendzig, W. Dieterich, Solid State Ionics 86-88, 29 (1996) Google Scholar
  9. B. Roling, Phys. Chem. Chem. Phys. 3, 5093 (2001) Google Scholar
  10. W.K. Lee, J.F. Liu, A.S. Nowick, Phys. Rev. Lett. 67, 1559 (1991) Google Scholar
  11. A.S. Nowick, B.S. Lim, A.V. Vaysleb, J. Non-Cryst. Solids 172-174, 1243 (1994) Google Scholar
  12. X. Lu, H. Jain, J. Phys. Chem. Solids 55, 1433 (1994) Google Scholar
  13. K.L. Ngai, J. Chem. Phys. 110, 10576 (1999) Google Scholar
  14. D.L. Sidebottom, C.M. Murray-Krezan, Phys. Rev. Lett. 89, 195901 (2002) Google Scholar
  15. A.S. Nowick, Solid State Ionics 136-137, 1307 (2000) Google Scholar
  16. A. Pimenov, J. Ullrich, P. Lunkenheimer, A. Loidl, C.H. Rüscher, Solid State Ionics 109, 111 (1998) Google Scholar
  17. P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 91, 207601 (2003) Google Scholar
  18. C. Cramer, Ber. Bunsenges. Phys. Chem. 100, 1497 (1996) Google Scholar
  19. A.S. Nowick and coworkers [10, 11] have termed the NCL-response as “second universality”, to be distinguished from the “universal” appearance of sublinear power laws [1] in the response at ambient temperatures and frequencies ω≃106s-1 Google Scholar
  20. R. Peibst, S. Schott, P. Maass, Phys. Rev. Lett. 95, 115901 (2005); P. Maass, R. Peibst, J. Non-Cryst. Solids 352, 5178 (2006) Google Scholar
  21. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972) Google Scholar
  22. K.S. Gilroy, W.A. Phillips, Phil. Mag. B 43, 735 (1981) Google Scholar
  23. P. Heitjans, W. Faber, A. Schirmer, J. Non-Cryst. Solids 131-133, 1053 (1991) Google Scholar
  24. J. Dieckhöfer, O. Kanert, R. Küchler, A. Volmari, J. Jain, Phys. Rev. B 55, 1 (1997) Google Scholar
  25. H. Jain, Met. Mater. Proc. 11, 317 (1999) Google Scholar
  26. H. Jain, S. Krishnaswami, O. Kanert, J. Non-Cryst. Solids 307-310, 1017 (2002) Google Scholar
  27. C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaria, K.L. Ngai, Phys. Rev. Lett. 86, 1297 (2001) Google Scholar
  28. J. Habasaki, K.L. Ngai, Y. Hiwatari, Phys. Rev. E 66, 021205 (2002) Google Scholar
  29. P. Pendzig, W. Dieterich, Solid State Ionics 105, 209 (1998) Google Scholar
  30. B. Roling, C. Martiny, S. Murugavel, Phys. Rev. Lett. 87, 085901 (2001) Google Scholar
  31. K. Funke, R.D. Banhatti, C. Cramer, Phys. Chem. Chem. Phys. 7, 157 (2005) Google Scholar
  32. O. Kanert, R. Küchler, J. Dieckhöfer, X. Lu, H. Jain, Phys. Rev. B 49, 629 (1994) Google Scholar
  33. T. Blochowitz, A. Kudlik, S. Benkhof, J. Senker, E. Rössler, J. Chem. Phys. 110, 12011 (1999) Google Scholar
  34. T. Höhr, P. Pendzig, W. Dieterich, P. Maass, Phys. Chem. Chem. Phys. 4, 3168 (2002) Google Scholar
  35. B. Rinn, W. Dieterich, P. Maass, Phil. Mag. B 77, 1283 (1998) Google Scholar
  36. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977) Google Scholar
  37. M. Schulz, W. Dieterich, P. Maass, Z. Phys. Chem. 218, 1375 (2004) Google Scholar
  38. Y.J. Uemura, T. Yamazaki, D.R. Harshman, M. Senba, E.J. Ansaldo, Phys. Rev. B 31, 546 (1985) Google Scholar
  39. When considering the secular part \({\bf m}_i/r_i^3\) of the dipolar fields only, one obtains \(C_W=\pi^2/3\cong3.29\), and inclusion of the non-secular part \(-3({\bf m}_i\cdot{\bf r}_i){\bf r}_i/r_i^5\) gives \(C_W=(\pi^2/3)[1+(2\sqrt{3})^{-1}{\rm arcsinh}\sqrt{3}]\cong4.54\) [40] Google Scholar
  40. F. Scheffler, P. Maass, Europhys. Lett. 62, 439 (2003) Google Scholar
  41. P. Maass, F. Scheffler, Physica A 314, 200 (2002) Google Scholar
  42. R. Kubo, T. Toyabe, in Magnetic Resonance and Relaxation, edited by R. Blinč (North-Holland, Amsterdam, 1967), p. 810 Google Scholar
  43. T.J. Jackson, C. Binns, E.M. Forgan, E. Morenzoni, Ch. Niedermayer, H. Glückler, A. Hofer, H. Luetkens, T. Prokscha, T.M. Riseman, A. Schatz, M. Birke, J. Litterst, G. Schatz, H.P. Weber, J. Phys.: Cond. Matter 12, 1399 (2000) Google Scholar
  44. J. Garciá-Otero, M. Porto, J. Rival, A. Bunde, Phys. Rev. Lett. 84, 167 (2000) Google Scholar
  45. M. Ulrich, J. Garciá-Otero, J. Rivas, A. Bunde, Phys. Rev. B 67, 024416 (2003) Google Scholar
  46. S. Russ, A. Bunde, Phys. Rev. B 75, 174445 (2007) Google Scholar
  47. M. Albrecht, A. Maier, F. Treubel, M. Maret, P. Poinsot, G. Schatz, Europhys. Lett. 62, 884 (2001) Google Scholar
  48. S. Heinrichs, W. Dieterich, P. Maass, Phys. Rev. B 75, 085437 (2007) Google Scholar
  49. U.T. Höchli, K. Knorr, A. Loidl, Adv. Phys. 39, 605 (1990) Google Scholar
  50. B.E. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990) Google Scholar
  51. S.H.L. Klapp, J. Phys.: Cond. Matter 17, R525 (2005) Google Scholar
  52. W.A. Phillips, Rep. Progr. Phys. 50, 1675 (1987) Google Scholar
  53. C.C. Yu, A. Leggett, Comments Cond. Mat. Phys. 14, 231 (1988) Google Scholar
  54. M.W. Klein, Phys. Rev. B 45, 5209 (1992) Google Scholar
  55. A. Würger, Springer Tracts in Modern Physics, Vol. 135 (Springer, Berlin, 1996) Google Scholar
  56. R. Kühn, U. Horstmann, Festkörperprobleme/Adv. Solid State Phys. 38, 425 (1999) Google Scholar
  57. H. Lammert, M. Kumow, A. Heuer, Phys. Rev. Lett. 90, 215901 (2003) Google Scholar
  58. P. Maass, W. Dieterich, F. Scheffler, in Flow Dynamics: The 2nd Int. Conf. on Flow Dynamics, edited by M. Tokuyama, S. Maruyama, AIP Conf. Proc. 832, 492 (Melville, New York, 2006) Google Scholar
  59. When fitting the long-time decay to eq. (16), one has to take into account an apparent non-vanishing Edwards-Anderson parameter \([\langle{\bf p}\rangle^2]_{\rm av}\). However, investigations for different system sizes with extensive parallel tempering procedures did not provide a conclusive answer with respect to the possible occurrence of spin glass behaviour Google Scholar
  60. S.D. Druger, M.A. Ratner, A. Nitzan, Phys. Rev. B 31, 3939 (1985) Google Scholar
  61. Asymtotically for low ω we expect the slope unity again to appear, but at low θ such frequencies were inaccessible by our simulations Google Scholar
  62. J.M. Luttinger, L. Tisza, Phys. Rev. 70, 954 (1946) Google Scholar
  63. H. Grille et al. (to be published) Google Scholar
  64. T. Höhr, Diploma thesis, University of Konstanz, 2000, Google Scholar
  65. W. Dieterich, P. Maass, Solid State Ionics (2008) (in press) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Universität KonstanzKonstanzGermany
  2. 2.Technische Universität Ilmenau , Institut für PhysikIlmenauGermany
  3. 3.Universität UlmUlmGermany

Personalised recommendations