Advertisement

The European Physical Journal Special Topics

, Volume 160, Issue 1, pp 281–289 | Cite as

Gaussian entanglement of symmetric two-mode Gaussian states

Article

Abstract.

A Gaussian degree of entanglement for a symmetric two-mode Gaussian state can be defined as its distance to the set of all separable two-mode Gaussian states. The principal property that enables us to evaluate both Bures distance and relative entropy between symmetric two-mode Gaussian states is the diagonalization of their covariance matrices under the same beam-splitter transformation. The multiplicativity property of the Uhlmann fidelity and the additivity of the relative entropy allow one to finally deal with a single-mode optimization problem in both cases. We find that only the Bures-distance Gaussian entanglement is consistent with the exact entanglement of formation.

Keywords

European Physical Journal Special Topic Relative Entropy Gaussian State Minimal Relative Entropy Symplectic Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.L. Braunstein, P. Van Loock, Rev. Mod. Phys. 77, 513 (2005) Google Scholar
  2. A. Peres, Phys. Rev. Lett. 77, 1413 (1996) Google Scholar
  3. R. Simon, Phys. Rev. Lett. 84, 2726 (2000) Google Scholar
  4. P. Marian, T.A. Marian, H. Scutaru, J. Phys. A: Math. Gen. 34, 6969 (2001) Google Scholar
  5. G. Giedke et al., Phys. Rev. Lett. 91, 107901 (2003) Google Scholar
  6. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002) Google Scholar
  7. V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997); V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998); V. Vedral, Rev. Mod. Phys. 74, 197 (2002) Google Scholar
  8. S. Scheel, D.-G. Welsch, Phys. Rev. A 64, 063811 (2001) Google Scholar
  9. P. Marian, T.A. Marian, H. Scutaru, Phys. Rev. A 68, 062309 (2003) Google Scholar
  10. M.M. Wolf et al., Phys. Rev. A 69, 052320 (2004) Google Scholar
  11. L.-Z. Jiang, Int. J. Quantum Inf. 2, 273 (2004) Google Scholar
  12. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. Lett. 92, 087901 (2004); G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 70, 022318 (2004) Google Scholar
  13. G. Adesso, F. Illuminati, Phys. Rev. A 72, 032334 (2005) Google Scholar
  14. L.-M. Duan et al., Phys. Rev. Lett. 84, 2722 (2000) Google Scholar
  15. P. Marian, Phys. Rev. A 45, 2044 (1992); P. Marian, T.A. Marian, Phys. Rev. A 47, 4474 (1993); Phys. Rev. A 47, 4487 (1993) Google Scholar
  16. M.C. de Oliveira, Phys. Rev. A 72, 012317 (2005) Google Scholar
  17. B.L. Schumaker, Phys. Rep. 135, 317 (1986) Google Scholar
  18. U. Leonhardt, Phys. Rev. A 48, 3265 (1993) Google Scholar
  19. C.A. Fuchs, Ph.D. thesis, University of New Mexico, 1995 [quant-ph/9601020/1996] Google Scholar
  20. D. Bures, Trans. Am. Math. Soc. 135, 199 (1969) Google Scholar
  21. A. Wehrl, Rev. Mod. Phys. 50, 221 (1978) Google Scholar
  22. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976); Rep. Math. Phys. 24, 229 (1986) Google Scholar
  23. R. Jozsa, J. Mod. Opt. 41, 2315 (1994) Google Scholar
  24. P. Marian, T.A. Marian [e-print arXiv:0705.1138] [quant-ph] Google Scholar
  25. P. Marian, T.A. Marian, H. Scutaru, Phys. Rev. A 69, 022104 (2004) Google Scholar
  26. Xiao-yu Chen, Phys. Rev. A 71, 062320 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Department of PhysicsUniversity of BucharestBucharest-MăgureleRomania

Personalised recommendations