The European Physical Journal Special Topics

, Volume 153, Issue 1, pp 275–277 | Cite as

Time-domain modulated free-carrier absorption measurements of recombination process in silicon wafers

  • C. Gao
  • B. Li
  • X. Zhang


A time-domain modulated free-carrier absorption (MFCA) is developed both experimentally and theoretically to investigate the photo-carrier dynamics of silicon wafers illuminated by a square-wave-modulated super-band-gap laser beam. An explicit three-dimensional (3-D) theoretical expression for the temporal behavior of the MFCA signal is obtained by solving a 3-D carrier-diffusion equation The time-domain MFCA model is used to fit the experimental MFCA signals of p- and n-type Si wafers via a multi-parameter fitting procedure to determine simultaneously the electronic transport properties, that is, the bulk lifetime, the ambipolor diffusivity, and the front surface recombination velocity. The uncertainties of the fitted parameter values are estimated.


Modulation Frequency Silicon Wafer EUROPEAN Physical Journal Special Topic Electronic Transport Property Surface Recombination Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S.W. Glunz, W. Warta, J. Appl. Phys. 77, 3243 (1995) Google Scholar
  2. T. Ikari, A. Fukuyama, T. Murata, M. Suemitsu, N. Haddad, V. Reita, J.P. Roger, D. Fournier Mater. Sci. Eng. B 124-125, 345 (2005) Google Scholar
  3. D. Shaughnessy, A. Mandelis, J. Appl. Phys. 93, 5236 (2003) Google Scholar
  4. A. Mandelis, J. Batista, D. Shaughnessy, Phys. Rev. B 67, 205208 (2003) Google Scholar
  5. B. Li, D. Shaughnessy, A. Mandelis, J. Batista, J. Garcia, J. Appl. Phys. 96, 186 (2004) Google Scholar
  6. A. Mandelis, M. Pawlak, C. Wang, I. Delgadillo-Holtfort, J. Pelzl, J. Appl. Phys. 98, 123518 (2005) Google Scholar
  7. F. Sanii, F.P. Giles, R.J. Schwartz, J.L. Gray, Solid-State Electron. 35, 311 (1992) Google Scholar
  8. D. Shaughnessy, A. Mandelis, J. Appl. Phys. 93, 5236 (2003) Google Scholar
  9. B. Li, D. Shaughnessy, A. Mandelis, J. Appl. Phys. 97, 023701 (2005) Google Scholar
  10. X. Zhang, B. Li, C. Gao, Appl. Phys. Lett. 89, 112120 (2006) Google Scholar
  11. A.A. Istratov, H. Hieslmair, E.R. Weber, Appl. Phys. A 70, 489 (2000) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • C. Gao
    • 1
    • 2
  • B. Li
    • 1
  • X. Zhang
    • 1
  1. 1.Institute of Optics and Electronics, Chinese Academy of SciencesChengduP.R. China
  2. 2.School of Optoelectronic Information, University of Electronic Science and Technology of ChinaChengduP.R. China

Personalised recommendations