The European Physical Journal Special Topics

, Volume 151, Issue 1, pp 103–112 | Cite as

Transport of cold atoms in optical lattices



The work discusses transport of cold atoms in optical lattices. Two related but different problems are considered: interacting Bose atoms subject to a static field (i.e., the atoms in a tilted lattice); and non-interacting atoms in a tilted lattice in the presence of a buffer gas. For these two systems we found, respectively: periodic, quasiperiodic, or decaying Bloch oscillations, as it depends on the strength of atom-atom interactions and the magnitude of the static field; diffusive directed current of atoms, similar to the electron current in ordinary conductors.


European Physical Journal Special Topic Optical Lattice Cold Atom Wannier Function Tilted Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Ben Dahan et al., Phys. Rev. Lett. 76, 4508 (1996) Google Scholar
  2. O. Morsch et al., Phys. Rev. Lett. 87, 140402 (2001) Google Scholar
  3. M. Greiner et al., Nature 415, 39 (2002) Google Scholar
  4. F.S. Cataliotti et al., New J. Phys. 5, 71.1 (2003) Google Scholar
  5. R.G. Scott et al., Phys. Rev. A 69, 033605 (2004) Google Scholar
  6. L. Pezze et al., Phys. Rev. Lett. 93, 120401 (2004) Google Scholar
  7. B. Paredes et al., Nature 429, 277 (2004) Google Scholar
  8. C.D. Fertig et al., Phys. Rev. Lett. 94, 120403 (2005) Google Scholar
  9. S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, D. Meschede, Science 293, 278 (2001) Google Scholar
  10. L. Amico, A. Osterloh, F. Cataliotti, Phys. Rev. Lett. 95, 063201 (2005) Google Scholar
  11. M.-J. Giannoni, A. Voros, J. Zinn-Justin (eds.), Chaos and Quantum Physics (North-Holland, Amsterdam, 1991) Google Scholar
  12. A.R. Kolovsky, A. Buchleitner, Europhys. Lett. 68, 632 (2004) Google Scholar
  13. It is worth of noting that the statistical analysis of the spectrum of the Bose-Hubbard model is not a trivial task and one should first decompose the spectrum according to the global symmetries 66. The other option is to introduce a weak disorder, \(\hat{V}=\sum_l \epsilon_l \hat{n}_l\), which breaks all symmetries 70. (`Weak' means here that the Anderson localization length of the single-particle wave functions is much larger than the system size L.) Google Scholar
  14. M. Hiller, T. Kottos, T. Geisel, Phys. Rev. A 73, 061604 (2006) Google Scholar
  15. A.R. Kolovsky, New J. Phys. 8, 197 (2006) Google Scholar
  16. A.R. Kolovsky, Phys. Rev. Lett. 99, 020401 (2007) Google Scholar
  17. M. Rigol, A. Muramatsu, Phys. Rev. A 70, 031603(R) (2004) Google Scholar
  18. A.R. Kolovsky, arXiv:cond-mat/0602100 Google Scholar
  19. A.R. Kolovsky, A. Buchleitner, Phys. Rev. E 68, 056213 (2003) Google Scholar
  20. A.R. Kolovsky, Phys. Rev. Lett. 90, 213002 (2003) Google Scholar
  21. H. Ott, E. de Mirandes, F. Ferlaino, G. Roati, G. Modugno, M. Inguscio, Phys. Rev. Lett. 92, 160601 (2004) Google Scholar
  22. This could be, for example, the case of spinless Bose atoms, if one uses the gradient of magnetic field to introduce a static force for Fermi atoms Google Scholar
  23. A.V. Ponomarev, J. Mandroñero, A.R. Kolovsky, A. Buchleitner, Phys. Rev. Lett. 96, 050404 (2006) Google Scholar
  24. Chaotic systems have infinite informational capacity and, because of this, can play the role of a bath. In general aspect this property of chaotic systems is discussed in A.R. Kolovsky, Phys. Rev. E 50, 3569 (1994) Google Scholar
  25. Note, in passing, that for a localized wave packet the master equation ([SEE TEXT]) predicts the diffusive spreading of atoms along the lattice, see A.R. Kolovsky, H.J. Korsch, A.V. Ponomarev, Phys. Rev. A 66, 053405 (2002) Google Scholar
  26. A.V. Ponomarev, Ph.D thesis, 2007 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Kirensky Institute of PhysicsKrasnoyarskRussia

Personalised recommendations