The European Physical Journal Special Topics

, Volume 150, Issue 1, pp 265–267 | Cite as

Efficient and fast thermalization of Rare Isotope Beam from projectile fragmentation

The cyclotron gas stopper project at the NSCL
  • G. Bollen
  • S. Chouhan
  • C. Guénaut
  • F. Marti
  • D. J. Morrissey
  • D. Lawton
  • J. Ottarson
  • G. Pang
  • S. Schwarz
  • B. M. Sherrill
  • M. Wada
  • A. F. Zeller
Article

Abstract.

Gas stopping is the method of choice for converting rare isotope beams obtained via projectile fragmentation and in-flight separation into low-energy beams. Current gas stopper systems for high-energy beams are based on linear gas cells filled with 0.1–1 bar of helium. While successful for a number of experiments, they are limited in the maximum beam rates that can be used and exhibit long extraction times that can lead to decay losses for very short-lived isotopes. To avoid these limitations, a new type of gas stopper is being developed at the NSCL/MSU based on a cyclotron-type magnet with a stopping chamber filled with helium buffer gas at low pressure. RF-guiding techniques are used to extract the thermalized ions from the central region.

PACS.

– – 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Weissman et al., Nucl. Instrum. Meth. A 540, 245 (2005) Google Scholar
  2. G. Sikler et al., Nucl. Instrum. Meth. B 204, 482 (2003) Google Scholar
  3. G. Savard et al., Nucl. Instrum. Meth. B 204, 582 (2003) Google Scholar
  4. M. Wada et al., Nucl. Instrum. Meth. B 204, 570 (2003) Google Scholar
  5. W. Trimble et al., Nucl. Phys. A 746, 415c (2004) Google Scholar
  6. L. Weissman et al., Nucl. Instrum. Meth. A 522, 212 (2004) Google Scholar
  7. L. Weissman et al., Nucl. Instrum. Meth. A 531, 416 (2004) Google Scholar
  8. L. Weissman et al., Nucl. Phys. A 746, 655c (2004) Google Scholar
  9. G. Bollen et al., Phys. Rev. Lett. 96, 152501 (2006) Google Scholar
  10. R. Ringle et al., Int. J. Mass Spectr. 251, 300 (2006) Google Scholar
  11. A. Takamine et al., Rev. Sci. Instrum. 76, 103503 (2005) Google Scholar
  12. D.J. Morrissey (this conference) Google Scholar
  13. G. Bollen et al., Nucl. Instrum. Meth. A 550, 27 (2005) Google Scholar
  14. L.M. Simons, Hyperfine Interact. 81, 253 (1993) Google Scholar
  15. I. Katayama, M. Wada, Hyperfine Interact. 115, 165 (1998) Google Scholar
  16. P. Sigmund, K.B. Winterbon, Nucl. Instrum. Meth. 119, 541 (1974) Google Scholar
  17. H.-D. Betz, Rev. Mod. Phys. 44, 465 (1972) Google Scholar
  18. O. Woitke et al., Phys. Rev. A 57, 2692 (1998) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • G. Bollen
    • 1
    • 2
  • S. Chouhan
    • 1
  • C. Guénaut
    • 1
  • F. Marti
    • 1
  • D. J. Morrissey
    • 1
    • 3
  • D. Lawton
    • 1
  • J. Ottarson
    • 1
  • G. Pang
    • 1
    • 3
  • S. Schwarz
    • 1
  • B. M. Sherrill
    • 1
    • 2
  • M. Wada
    • 4
  • A. F. Zeller
    • 1
  1. 1.National Superconducting Cyclotron Laboratory NSCL, Michigan State UniversityEast LansingUSA
  2. 2.Department of Physics & AstronomyMichigan State UniversityEast LansingUSA
  3. 3.Department of ChemistryMichigan State UniversityEast LansingUSA
  4. 4.RIKEN, 2-1 Hirosawa, WakoSaitamaJapan

Personalised recommendations