The European Physical Journal Special Topics

, Volume 149, Issue 1, pp 103–125 | Cite as

Nanosized allotropes of molybdenum disulfide

Article

Abstract.

The present review provides an overview of the rich polymorphism encountered on different length scales within the very versatile material class of transition metal chalcogenides. On the mesoscopic to nanoscopic scale such compounds exhibit a wide variety of nanostructured allotropes with varying dimensionality and competing internal structure, such as nanorods, nanostripes, nanotubes, fullerene-like particles and fullerenes. On the atomistic scale, competing local atomic arrangements within one type of allotrope determine crucially the stability, the chemical potential, and the electronic properties. Thus, any modeling of such structures cannot be restricted to purely classical or quantum-mechanical approaches, but rather the development of classical models on the basis of electronic-structure calculations is required to fully account for all relevant nano- and meso-scale effects. The main part of this review is dedicated to the stability of such nanosystems in relation with the stable size regimes, with their electronic structure, and the derived analysis of the reactivity and application potential. The calculations explain, why the nano-scale properties of the MoS2 allotropes can be quite different from the bulk ones, and predict novel effects both within and in addition to the established applications of MoS2 compounds in catalysis, tribology, electronics and electrochemistry.

Keywords

Fullerene European Physical Journal Special Topic High Strain Energy DFTB Calculation Sonoelectrochemical Synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985) Google Scholar
  2. S. Iijima, Nature 354, 56 (1991) Google Scholar
  3. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998) Google Scholar
  4. P.J.F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge, 1999) Google Scholar
  5. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications and Electronics, in Topics in Applied Physics, Vol. 80 (Springer, Berlin, 2001) Google Scholar
  6. A.L. Ivanovskii, Quantum Chemistry in Materials Science: Nanotubular Forms of Matter (Ural Branch of Russian Academy of Science, Ekaterinburg, 1999) Google Scholar
  7. Fullerenes: Chemistry, Physics, and Technology, edited by K.M. Kadish and R.S. Ruoff (Wiley-Interscience, New York, 2000) Google Scholar
  8. R.E. Smalley, B.I. Yakobson, Solid State Commun. 107, 597 (1998) Google Scholar
  9. K. Sattler, Carbon 33, 915 (1995) Google Scholar
  10. H. Shioyama, T. Akita, Carbon 41, 179 (2003) Google Scholar
  11. J.-Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, T.J. Terminello, Phys. Rev. Lett. 90, 037401 (2003) Google Scholar
  12. A.N. Enyashin, A.L. Ivanovskii, Phys. Solid State 49, 392 (2007) Google Scholar
  13. B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998) Google Scholar
  14. M. Hodak, L.A. Girifalco, Phys. Rev. B 67, 075419 (2003) Google Scholar
  15. D. Nishide, H. Dohi, T. Wakabayashi, E. Nishibori, S. Aoyagi, M. Ishida, S. Kikuchi, R. Kitaura, T. Sugai, M. Sakata, H. Shinohara, Chem. Phys. Lett. 428, 356 (2006) Google Scholar
  16. V. Gupta, P. Scharff, K. Risch, H. Romanus, R. Müller, Solid State Commun. 131, 153 (2004) Google Scholar
  17. M.J. Bucknum, E.A. Castro, J. Chem. Theory Comput. 2, 775 (2006) Google Scholar
  18. A. Kuc, G. Seifert, Phys. Rev. B 74, 214104 (2006) Google Scholar
  19. J.M. Romo-Herrera, M. Terrones, H. Terrones, S. Dag, V. Meunier, Nano Lett. 7, 570 (2007) Google Scholar
  20. V.R. Coluci, D.S. Galvão, A. Jorio, Nanotechnology 17, 617 (2006) Google Scholar
  21. X. Rocquefelte, G.-M. Rignanese, V. Meunier, H. Terrones, M. Terrones, J.-C. Charlier, Nano Lett. 4, 805 (2004) Google Scholar
  22. X. Lu, Z. Chen, Chem. Rev. 105, 3643 (2005) Google Scholar
  23. R.H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87, 6687 (1987) Google Scholar
  24. V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvão, R.H. Baughman, Phys. Rev. B 68, 035430 (2003) Google Scholar
  25. A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, A.L. Ivanovskii, J. Mol. Struct. (Theochem) 684, 29 (2004) Google Scholar
  26. E. Konstantinova, S.O. Dantas, P.M.V.B. Barone, Phys. Rev. B 74, 035417 (2006) Google Scholar
  27. R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360, 444 (1992) Google Scholar
  28. L. Margulis, G. Salitra, R. Tenne, M. Talianker, Nature 365, 113 (1993) Google Scholar
  29. R. Tenne, A.K. Zettl, Nanotubes from Inorganic Materials, in Topics in Applied Physics, Vol. 80 (Springer, Berlin, 2001), p. 81 Google Scholar
  30. V.V. Pokropivny, Powder Metallurgy and Metal Ceramics 41, 123 (2002) Google Scholar
  31. A.L. Ivanovskii, Russ. Chem. Rev. 71, 175 (2002) Google Scholar
  32. G.R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 41, 2446 (2002) Google Scholar
  33. C.N.R. Rao, M. Nath, Dalton Trans. 1 (2003) Google Scholar
  34. R. Tenne, J. Mater. Res. 21, 2726 (2006) Google Scholar
  35. M. Remskar, Adv. Mater. 16, 1497 (2004) Google Scholar
  36. H. Bergmann, B. Czeska, I. Haas, B. Mohsin, K.-H. Wandner, Gmelin Handbook of Inorganic and Organometallic Chemistry, Vol. B7 (Springer-Verlag, Berlin, 1992) Google Scholar
  37. B.B. Zvyagin, S.V. Soboleva, Sov. Phys. Crystalogr. 12, 46 (1967) Google Scholar
  38. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Phys. Rev. B 35, 303 (1987) Google Scholar
  39. A.L. Tan, J. Mol. Struct. (Theochem) 363, 303 (1996) Google Scholar
  40. T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Phys. Rev. B 64, 235305 (2001) Google Scholar
  41. A.J. Grant, T.M. Griffiths, G.D. Pitt, A.D. Yoffe, J. Phys. C: Solid State Phys. 8, 97 (1975) Google Scholar
  42. N.J. Doran, Physica B 99, 227 (1980) Google Scholar
  43. R. Bissessur, M.G. Kanatzidis, J.L. Schindler, C.R. Kannewurf, J. Chem. Soc. Chem. Commun. 20, 1582 (1993) Google Scholar
  44. P.D. Fleischauer, Thin Solid Films 154, 309 (1987) Google Scholar
  45. F. Wypych, R. Schöllhorn, J. Chem. Soc. Chem. Commun. 19, 1386 (1992) Google Scholar
  46. F. Wypych, C. Solenthaler, R. Prins, T. Weber, J. Solid State Chem. 144, 430 (1999) Google Scholar
  47. F. Wypych, T. Weber, R. Prins, Chem. Mater. 10, 723 (1998) Google Scholar
  48. D. Yang, S. Jiménez Sandoval, W.M.R. Divigalpitiya, J.C. Irwin, R.F. Frindt, Phys. Rev. B 43, 12053 (1991) Google Scholar
  49. J. Heising, M.G. Kanatzidis, J. Am. Chem. Soc. 121, 638 (1999) Google Scholar
  50. V. Alexiev, R. Prins, T. Weber, Phys. Chem. Chem. Phys. 2, 1815 (2000) Google Scholar
  51. Y. Rosenfeld Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne, Phys. Chem. Chem. Phys. 5, 1644 (2003) Google Scholar
  52. Q. Li, E.C. Walter, W.E. van der Veer, B.J. Murray, J.T. Newberg, E.W. Bohannan, J.A. Switzer, J.C. Hemminger, R.M. Penner, J. Phys. Chem. B 109, 3169 (2005) Google Scholar
  53. X. Zheng, L. Zhu, A. Yan, C. Bai, Y. Xie, Ultrason. Sonochem. 11, 83 (2004) Google Scholar
  54. Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, Z. Wang, Mater. Lett. 59, 3452 (2005) Google Scholar
  55. G. Seifert, T. Köhler, R. Tenne, J. Phys. Chem. B 106, 2497 (2002) Google Scholar
  56. J.D. Fuhr, J.O. Sofo, A. Saul, Phys. Rev. B 60, 8343 (1999) Google Scholar
  57. M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nørskov, S. Helveg, F. Besenbacher, Phys. Rev. Lett. 87, 196803 (2001) Google Scholar
  58. Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267, 222 (1995) Google Scholar
  59. W.K. Hsu, B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, J. Am. Chem. Soc. 122, 10155 (2000) Google Scholar
  60. L. Margulis, P. Dluzewski, Y. Feldman, R. Tenne, J. Microsc. 181, 68 (1996) Google Scholar
  61. R. Sen, A. Govindaraj, K. Suenaga, S. Suzuki, H. Kataura, S. Iijima, Y. Achiba, Chem. Phys. Lett. 340, 242 (2001) Google Scholar
  62. Y. Mastai, M. Homyofner, A. Gedanken, G. Hodes, Adv. Mater. 11, 1010 (1999) Google Scholar
  63. M. Nath, A. Govindaraj, C.N.R. Rao, Adv. Mater. 13, 283 (2001) Google Scholar
  64. R. Tenne, M. Homyofner, Y. Feldman, Chem. Mater. 10, 3225 (1998) Google Scholar
  65. P. Santiago, J.A. Ascencio, D. Mendoza, M. Pérez-Alvarez, A. Espinosa, C. Reza-Sangermán, P. Schabes-Retchkiman, G.A. Camacho-Bragado, M. José-Yacamán, Appl. Phys. A 78, 513 (2004) Google Scholar
  66. I. Milošević, T. Vuković, M. Damnjanović, B. Nikolić, Eur. Phys. J. B 17, 707 (2000) Google Scholar
  67. E. Dobardžić, B. Dakić, M. Damnjanović, I. Milošević, Phys. Rev. B 71, 121405(R) (2005) Google Scholar
  68. E. Dobardžić, I. Milošević, B. Dakić, M. Damnjanović, Phys. Rev. B 74, 033403 (2006) Google Scholar
  69. G. Seifert, T. Frauenheim, J. Kor. Phys. Soc. 37, 89 (2000) Google Scholar
  70. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146 (2000) Google Scholar
  71. M. Bar-Sadan, A.N. Enyashin, S. Gemming, R. Popovitz-Biro, S.Y. Hong, Y. Prior, R. Tenne, G. Seifert, J. Phys. Chem. B 110, 25399 (2006) Google Scholar
  72. V. Kralj-Iglič, M. Remškar, G. Vidmar, M. Fošnarič, A. Iglič, Phys. Lett. A 296, 151 (2002) Google Scholar
  73. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, R. Tenne, J. Mater. Res. 19, 454 (2004) Google Scholar
  74. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, PNAS 103, 523 (2006) Google Scholar
  75. J. Chen, S.-L. Li, Q. Xu, K. Tanaka, Chem. Commun. 16, 1722 (2002) Google Scholar
  76. J. Chen, N. Kuriyama, H. Yuan, H.T. Takeshita, T. Sakai, J. Am. Chem. Soc. 123, 11813 (2001) Google Scholar
  77. J. Chen, S.-L. Li, Z.L. Tao, J. Alloys Compd. 356-357, 413 (2003) Google Scholar
  78. M. Remškar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J.Demšhar, P. Stadelmann, F. Lévy, D. Mihailovic, Science 292, 479 (2001) Google Scholar
  79. M. Remškar, A. Mrzel, R. Sanjines, H. Cohen, F. Lévy, Adv. Mater. 15, 237 (2003) Google Scholar
  80. A. Kis, D. Mihailovic, M. Remškar, A. Mrzel, A. Jesih, I. Piwonski, A.J. Kulik, W. Benoît, L. Forr'o, Adv. Mater. 15, 733 (2003) Google Scholar
  81. M. Verstraete, J.-C. Charlier, Phys. Rev. B 68, 045423 (2003) Google Scholar
  82. I. Vilfan, Eur. Phys. J. B 51, 277 (2006) Google Scholar
  83. S. Gemming, G. Seifert, I. Vilfan, Phys. Stat. Sol. B 243, 3320 (2006) Google Scholar
  84. T. Yang, S. Okano, S. Berber, D. Tománek, Phys. Rev. Lett. 96, 125502 (2006) Google Scholar
  85. H. Topsøe, B.S. Clausen, F.E. Massoth, Catalysis Science and Technology, Vol. 11, edited by J.R. Anderson and M. Boudard (Springer, Berlin, 1996), p. 1 Google Scholar
  86. S. Helveg, J.V. Lauritsen, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Phys. Rev. Lett. 84, 951 (2000) Google Scholar
  87. J. Kibsgaard, J.V. Lauritsen, E. Lægsgaard, B.S. Clausen, H. Topsøe, F. Besenbacher, J. Am. Chem. Soc. 128, 13950 (2006) Google Scholar
  88. N. Bertram, J. Cordes, Y.D. Kim, G. Ganteför, S. Gemming, G. Seifert, Chem. Phys. Lett. 418, 36 (2006) Google Scholar
  89. L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Catal. Lett. 64, 95 (2000) Google Scholar
  90. T. Zeng, X.-D. Wen, Y.-W. Li, H. Jiao, J. Phys. Chem. B 109, 13704 (2005) Google Scholar
  91. G. Seifert, J. Tamuliene, S. Gemming, Chem. Phys. Lett. 418, 36 (2006) Google Scholar
  92. J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B.S. Clausen, E. Lægsgaard, F. Besenbacher, Nat. Nanotechnol. 2, 53 (2007) Google Scholar
  93. S. Gemming, G. Seifert, Nat. Nanotechnol. 2, 21 (2007) Google Scholar
  94. M.V. Bollinger, K.W. Jacobsen, J.K. Nørskov, Phys. Rev. B 67, 085410 (2003) Google Scholar
  95. P. Faye, E. Payen, D. Bougeard, J. Mol. Model. 5, 63 (1999) Google Scholar
  96. I.I. Zakharov, A.N. Startsev, Russ. Chem. Bull. Int. Ed. 55, 2259 (2005) Google Scholar
  97. H. Orita, K. Uchida, N. Itoh, J. Mol. Catal. A: Chem. 193, 197 (2003) Google Scholar
  98. H. Orita, K. Uchida, N. Itoh, J. Mol. Catal. A: Chem. 195, 173 (2003) Google Scholar
  99. X.-D. Wen, T. Zeng, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Catal. A: Chem. 249, 191 (2006) Google Scholar
  100. A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne, J. Am. Chem. Soc. 122, 11108 (2000) Google Scholar
  101. X.L. Li, Y.D. Li, Chem. Eur. J. 9, 2726 (2003) Google Scholar
  102. Y. Xiong, Y. Xie, Z. Li, X. Li, R. Zhang, Chem. Phys. Lett. 382, 182 (2003) Google Scholar
  103. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A.J. Amaratunga, M. Naito, T. Kanki, Chem. Phys. Lett. 368, 331 (2003) Google Scholar
  104. D.J. Srolovitz, S.A. Safran, M. Homyonfer, R. Tenne, Phys. Rev. Lett. 74, 1779 (1995) Google Scholar
  105. L. Cizaire, B. Vacher, T. Le Mogne, J.M. Martin, L. Rapoport, A. Margolin, R. Tenne, Surf. Coat. Tech. 160, 282 (2002) Google Scholar
  106. P.A. Parilla, A.C. Dillon, K.M. Jones, G. Riker, D.L. Schulz, D.S. Ginley, M.J. Heben, Nature 397, 114 (1999) Google Scholar
  107. P.A. Parilla, A.C. Dillon, B.A. Parkinson, K.M. Jones, J. Alleman, G. Riker, D.S. Ginley, M.J. Heben, J. Phys. Chem. B 108, 6197 (2004) Google Scholar
  108. J.A. Ascencio, M. Perez-Alvarez, L.M. Molina, P. Santiago, M. José-Yacamán, Surf. Coat. Tech. 526, 243 (2003) Google Scholar
  109. A.N. Enyashin, V.V. Ivanovskaya, Y.N. Makurin, A.L. Ivanovskii, Inorg. Mater. 40, 395 (2004) Google Scholar
  110. A.N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovitz-Biro, S.Y. Hong, Y. Prior, R. Tenne, G. Seifert, Angew. Chem. Int. Ed. 46, 623 (2007) Google Scholar
  111. A.N. Enyashin, A.L. Ivanovskii, Russ. J. Inorg. Chem. 49, 1531 (2004) Google Scholar
  112. A.N. Enyashin, A.L. Ivanovskii, Russ. J. Phys. Chem. 79, 940 (2005) Google Scholar
  113. M. Nath, K. Mukhopadhyay, C.N.R. Rao, Chem. Phys. Lett. 352, 163 (2002) Google Scholar
  114. W.K. Hsu, Y.Q. Zhu, N. Yao, S. Firth, R.J.H. Clark, H.W. Kroto, D.R.M. Walton, Adv. Funct. Mater. 11, 69 (2001) Google Scholar
  115. V.V. Ivanovskaya, T. Heine, S. Gemming, G. Seifert, Phys. Stat. Sol. B 243, 1757 (2006) Google Scholar
  116. A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, E. Wachtel, H. Cohen, S. Reich, R. Tenne, J. Am. Chem. Soc. 124, 4747 (2002) Google Scholar
  117. X.-L. Li, Y.-D. Li, J. Phys. Chem. B 108, 13893 (2004) Google Scholar
  118. N. Mirabal, V. Lavayen, E. Benavente, M.A. Santa Ana, G. González, Microelectr. J. 35, 37 (2004) Google Scholar
  119. C. Reza-San Germán, P. Santiago, J.A. Ascencio, U. Pal, M. Pérez-Alvarez, L. Rendón, D. Mendoza, J. Phys. Chem. B 109, 17488 (2005) Google Scholar
  120. M.N. Tahir, N. Zink, M. Eberhardt, H.A. Therese, U. Kolb, P. Theato, W. Tremel, Angew. Chem. Int. Ed. 45, 4809 (2006) Google Scholar
  121. M. Remškar, Z. Škraba, P. Stadelmann, F. Lévy, Adv. Mater. 12, 814 (2000) Google Scholar
  122. S. Hofmann, C. Ducati, J. Robertson, Adv. Mater. 14, 1821 (2002) Google Scholar
  123. X.C. Song, Z.D. Xu, Y.F. Zheng, G. Han, B. Liu, W.X. Chen, Chin. Chem. Lett. 15, 623 (2004) Google Scholar
  124. Q. Wang, J. Li, J. Phys. Chem. C 111, 1675 (2007) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Physical Chemistry, Technical University of DresdenDresdenGermany
  2. 2.Institute of Solid State ChemistryEkaterinburgRussia
  3. 3.Forschungszentrum Dresden-Rossendorf, P.O. Box 510119DresdenGermany

Personalised recommendations