The European Physical Journal Special Topics

, Volume 147, Issue 1, pp 95–112 | Cite as

A system with distributed nonlinearities: The array of Josephson junctions

  • J.-G. Caputo
  • L. Loukitch
Article

Abstract.

We derive and review a new long wave model describing the electro-dynamics of point Josephson junctions in a superconducting cavity. It consists in a wave equation with Dirac delta function sine nonlinearities. This model allows a detailed and integrated description of the device that was not available up to now. In the static case, a remarkable agreement was obtained with experiments. For the dynamical behavior, three different solutions are identified: the ohmic mode, the junction mode and a dissipative kink. These have distinct signatures in the current voltage characteristics making them easy to identify in experiments.

Keywords

European Physical Journal Special Topic Josephson Junction Kink Solution Instantaneous Voltage Junction Device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mathematical Aspects of Tsunami Propagation, edited by A. Kundu (in press) Google Scholar
  2. B.D. Josephson, Phys. Lett. 1, 251 (1962) Google Scholar
  3. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (J. Wiley, 1982) Google Scholar
  4. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, 1986) Google Scholar
  5. A. Benabdallah, J.G. Caputo, N. Flytzanis, Physica D 161, 79 (2002) Google Scholar
  6. A. Benabdallah, J.G. Caputo, J. Appl. Phys. 92, 7 (2002) Google Scholar
  7. L.S. Hoel, W.H. Keller, J.E. Nordman, A.C. Scott, Solid State Electr. 15, 1167 (1972) Google Scholar
  8. M. Peyrard, M.D. Kruskal, Physica D 14, 88 (1984) Google Scholar
  9. J. Pfeiffer, M. Schuster, A.A. Abdumalikov Jr., A.V. Ustinov, Phys. Rev. Lett. 96, 034103 (2006) Google Scholar
  10. H.S.J. van der Zant, T.T. Orlando, S. Watanabe, S.H. Strogatz, Phys. Rev. Lett. 74, 174 (1995) Google Scholar
  11. A.V. Ustinov, M. Cirillo, B.H. Larsen, V.A. Oboznov, P. Carelli, G. Rotoli, Phys. Rev. B 51, 3081 (1995) Google Scholar
  12. A. Larsen, H. Dalsgaard Jensen, J. Mygind, Phys. Rev. B 43, 10179 (1991) Google Scholar
  13. J.G. Caputo, L. Loukitch, Physica 425, 69 (2005) Google Scholar
  14. J.G. Caputo, L. Loukitch, SIAM J. Appl. Math. (2007), http://arxiv.org/abs/math-ph/0607018 (in press) Google Scholar
  15. J.G. Caputo, L. Loukitch, Inv. Problems, http://arxiv.org/abs/math-ph/0607018 (submitted) Google Scholar
  16. J.G. Caputo, N. Flytzanis, M. Vavalis, J. Mod. Phys. C 7, 191 (1996) Google Scholar
  17. H.S. Carslaw, An Introduction to the Theory of Fourier Series and Integrals, 3rd edn. (Dover, 1950) Google Scholar
  18. H. Lamb, Elements of Soliton Theory (Wiley, 1983) Google Scholar
  19. L. Loukitch, Modélisation et analyse mathématique d'un système à non-linéarites distribuées : les réseaux hétérogènes de jonctions Josephson, Ph.D. thesis (INSA de Rouen, 2006) Google Scholar
  20. F. Boussaha, J.G. Caputo, L. Loukitch, M. Salez, Statics of Non Uniform Josephson Junction Parallel Arrays: Model vs. Experiment (2006), http://arxiv.org/abs/cond-mat/0609757 Google Scholar
  21. E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I (Springer-Verlag, 1987) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • J.-G. Caputo
    • 1
    • 2
  • L. Loukitch
    • 1
  1. 1.Laboratoire de MathématiquesMont-Saint-Aignan CedexFrance
  2. 2.Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise and CNRSCNRSFrance

Personalised recommendations