Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 391–405 | Cite as

Convection in thick and in thin fluid layers with a free surface – The influence of evaporation

  • M. Bestehorn
Article

Abstract.

Convective systems are examined by stability analysis as well as numerical solutions of the hydrodynamic basic equations in three spatial dimensions. Instabilities caused by surface tension gradients (Marangoni effect) are analyzed. The effect of evaporation of a volatile oil is studied by a two-layer system as well as by means of an effective Biot number. In thin fluid layers (a few 100 nm), an instability caused by the interaction between free surface and solid substrate manifests itself in form of surface deformation. We discuss this situation using the lubrication approximation. Special emphasis is layed on the influence of evaporation which may stabilize the system and which may lead to interesting new periodic structures.

Keywords

Evaporation Rate Pattern Formation European Physical Journal Special Topic Biot Number Marangoni Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bénard, Rev. Gen. Sci. Pur. Appl. 11, 1261 (1900) Google Scholar
  2. H. Bénard, Ann. Chim. Phys. 23, 62 (1901) Google Scholar
  3. J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958) Google Scholar
  4. E.L. Koschmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, London, 1992) Google Scholar
  5. P. Colinet, J.C. Legros, M.G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities (Wiley, Berlin, 2001) Google Scholar
  6. H. Mancini, D. Maza, Europhys. Lett. 66, 812 (2004) Google Scholar
  7. K. Eckert, M. Bestehorn, A. Thess, J. Fluid Mech. 356, 155 (1998) Google Scholar
  8. L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000) Google Scholar
  9. L.M. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer, Berlin, 2006) Google Scholar
  10. A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997) Google Scholar
  11. M. Bestehorn, K. Neuffer, Phys. Rev. Lett. 87, 046101 (2001) Google Scholar
  12. M. Bestehorn, A. Pototsky, U. Thiele, Eur. Phys. J. B 33, 57 (2003) Google Scholar
  13. M. Bestehorn, D. Merkt, Phys. Rev. Lett. 97, 127802 (2006) Google Scholar
  14. C. Pérez-García, B. Echebarria, M. Bestehorn, Phys. Rev. E 57, 475 (1998) Google Scholar
  15. D. Merkt, M. Bestehorn, Physica D 185, 196 (2003) Google Scholar
  16. M. Bestehorn, Phys. Rev. E 48, 3622 (1993) Google Scholar
  17. M. Bestehorn, Phys. Rev. Lett. 76, 46 (1996) Google Scholar
  18. A. Vrij, Discuss. Faraday Soc. 42, 23 (1966) Google Scholar
  19. G. Reiter, Phys. Rev. Lett. 68, 75 (1992) Google Scholar
  20. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992) Google Scholar
  21. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 581 (1993) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • M. Bestehorn
    • 1
  1. 1.Lehrstuhl Theoretische Physik, Statistische Physik und Nichtlineare Dynamik, Brandenburgische Technische Universität CottbusCottbusGermany

Personalised recommendations