Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 301–311 | Cite as

Two-dimensional wave patterns near a Hopf–Wave interaction in a chemical model

  • B. Peña
  • M. Bestehorn
Article

Abstract.

The complex behavior of a reaction-diffusion system is investigated in two dimensions near a codimension-2 point between a Hopf and a Wave bifurcation with resonant critical modes. As a result of coupling of a (ω, 0)-mode with modes (ω, k), standing waves arise in an extended region of the control parameters. Near threshold they appear with hexagonal symmetry. The selected wavenumber and the competition of two different spatial scales as a function of the control parameter agree with results calculated from Floquet analysis.

Keywords

Direct Numerical Simulation Standing Wave European Physical Journal Special Topic Bifurcation Diagram Wave Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Kapral, K. Showalter, Chemical Waves and Patterns (Kluwer Academic Publishers, Dordrecht, 1995) Google Scholar
  2. R.J. Field, L. György, Chaos in Chemistry and Biochemistry (World Scientific, Singapore, 1993) Google Scholar
  3. A. De Wit, Ph.D. thesis (Université Libre de Bruxelles, 1993) Google Scholar
  4. P. Davies, P. Blanchedeau, E. Dulos, P.D. Kepper, J. Chem. Phys. 102, 8236 (1998) Google Scholar
  5. B.P. Belousov, translation of original paper, pp. 605–613 in Field Google Scholar
  6. A.L. Lin, M. Bertram, K. Martinez, H.L. Swinney, A. Ardelea, G.F. Carey, Phys. Rev. Lett. 84, 4240 (2000) Google Scholar
  7. I. Sendiña, Ph.D. thesis (Universidad de Santiago de Compostela, 2001) Google Scholar
  8. V. Vanag, I. Epstein, Phys. Rev. Lett. 87, 228301 (2001) Google Scholar
  9. A. Oertzen, H. Rotermund, A. Mikhailov, G. Ertl, J. Phys. Chem. B 104, 3155 (2000) Google Scholar
  10. B. Peña, C. Pérez-García, M. Bestehorn, Int. J. Bif. Chaos 14, 3899 (2004) Google Scholar
  11. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Phys. Rev. Lett. 64, 2953 (1990) Google Scholar
  12. I. Berenstein, L. Yang, M. Dolnik, A. Zhabotinsky, I. Epstein, Phys. Rev. Lett. 058302 (2003) Google Scholar
  13. B. Peña, C. Pérez-García, Instabilities and Nonequilibrium Structures VII (Kluwer Academic Publishers, Dordrecht, 2004), pp. 305–311 Google Scholar
  14. L. Yang, A.M. Zhabotinsky, I.R. Epstein, Phys. Rev. Lett. 92, 198303 (2004) Google Scholar
  15. M. Watzl, A. Münster, Chem. Phys. Lett. 242, 273 (1995) Google Scholar
  16. O. Steinbock, E. Kasper, S. Müller, J. Phys. Chem. A 103, 3442 (1999) Google Scholar
  17. F. Fecher, P. Strasser, M. Eiswirth, F. Schneider, A. Münster, Chem. Phys. Lett. 313, 205 (1999) Google Scholar
  18. S. Krömker, Ph.D. thesis (Ruprecht-Karls-Universität, Heidelberg, 1997) Google Scholar
  19. A. Zhabotinsky, M. Dolnik, I. Epstein, J. Chem. Phys. 103, 10306 (1995) Google Scholar
  20. Z. Musslimani, L. Pismen, Phys. Rev. E 62, 389 (2000) Google Scholar
  21. E. Nicola, Ph.D. thesis (Technische Universität Dresden, 2001) Google Scholar
  22. L. Yang, I.R. Epstein, Phys. Rev. Lett. 90, 178303 (2003) Google Scholar
  23. K. Krischer, M. Eiswirth, G. Ertl, J. Chem. Phys. 96, 9161 (1992) Google Scholar
  24. H. Levine, X. Zou, Phys. Rev. E 48, 50 (1993) Google Scholar
  25. M. Falcke, H. Engel, M. Neufeld, Phys. Rev. E 52, 763 (1995) Google Scholar
  26. D. Battogtokh A. Mikhailov, Physica D 90, 84 (1996) Google Scholar
  27. D. Lima, D. Battogtokh, A. Mikhailov, P. Borckmans, G. Dewel, Europhys. Lett. 42, 631 (1998) Google Scholar
  28. M. Eiswirth, K. Krischer, G. Ertl, Surf. Sci. 202, 565 (1988) Google Scholar
  29. T.-Y. Li, J. Yorke, Am. Math. Monthly 82, 985 (1975) Google Scholar
  30. J.-L. Callot, F. Diener, M. Diener, C.R. Acad. Sci. Paris (Ser. I) 286, 1059 (1978) Google Scholar
  31. J. Moehlis, Nonlinear Sci. 12, 319 (2002) Google Scholar
  32. H. Haken, Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices (Springer Verlag, Berlin, 1987) Google Scholar
  33. M. Bestehorn, Phys. Rev. E 48, 3622 (1993) Google Scholar
  34. M. Eiswirth, Chaos in Surface-Catalyzed Reactions 141 in Field Google Scholar
  35. C. Price, Phys. Lett. A 194, 385 (1994) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Departamento Ingeniería MecánicaUniversidad de ZaragozaZaragozaSpain
  2. 2.Lehrstuhl Theoretische Physik, Statistische Physik und Nichtlineare Dynamik, Brandenburgische Technische Universität CottbusCottbusGermany

Personalised recommendations