Advertisement

The European Physical Journal Special Topics

, Volume 146, Issue 1, pp 177–187 | Cite as

Stochastic population dynamics in turbulent fields

Article

Abstract.

The behaviour of interacting populations typically displays irregular temporal and spatial patterns that are difficult to reconcile with an underlying deterministic dynamics. A classical example is the heterogeneous distribution of plankton communities, which has been observed to be patchy over a wide range of spatial and temporal scales. Here, we use plankton communities as prototype systems to present theoretical approaches for the analysis of the combined effects of turbulent advection and stochastic growth in the spatiotemporal dynamics of the population. Incorporation of these two factors into mathematical models brings an extra level of realism to the description and leads to better agreement with experimental data than that of previously proposed models based on reaction–diffusion equations.

Keywords

Phytoplankton Pattern Formation European Physical Journal Special Topic Stochastic Resonance Prey Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Folt, C.W. Burns, Trends Ecol. Evol. 14, 300 (1999) Google Scholar
  2. D.L. Mackas, Dissertation (Dalhousie University, 1977) Google Scholar
  3. D.L. Mackas, C.M. Boyd, Science 204, 62 (1979) Google Scholar
  4. J.F.R. Gower, K.L. Denman, R.J. Holyer, Nature 288, 157 (1980) Google Scholar
  5. http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=17387 (accessed 14 December 2006) Google Scholar
  6. E.R. Abraham, Nature 391, 577 (1998) Google Scholar
  7. C. López, Z. Neufeld, E. Hernández-García, P.H. Haynes, Phys. Chem. Earth (B) 26, 313 (2001) Google Scholar
  8. E. Hernández-García, C. López, Z. Neufeld, Chaos 12, 470 (2002) Google Scholar
  9. J.D. Murray, Mathematical Biology (Springer-Verlag, New York, 2003) Google Scholar
  10. C.S. Holling, Can. Ent. 91, 293 (1959) Google Scholar
  11. R.M. May, Nature 269, 471 (1977) Google Scholar
  12. J.E. Truscott, J. Brindley, Bull. Math. Biol. 56, 981 (1994) Google Scholar
  13. R.M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 2001) Google Scholar
  14. J.P. Aparicio, H.G. Solari, Phys. Rev. Lett. 86, 4183 (2001) Google Scholar
  15. H.G. Solari, M.A. Natiello, Phys. Rev. E 67, 031918 (2003) Google Scholar
  16. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A: Math. Gen. 14, L453 (1981) Google Scholar
  17. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) Google Scholar
  18. J.M.G. Vilar, J.M. Rubí, Phys. Rev. Lett. 78, 2886 (1997) Google Scholar
  19. J.M.G. Vilar, J.M. Rubí, Phys. Rev. Lett. 86, 950 (2001) Google Scholar
  20. A. Turing, Phil. Trans. R. Soc. Lond. B 237, 37 (1952) Google Scholar
  21. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993) Google Scholar
  22. J.H. Steele, Nature 248, 83 (1974) Google Scholar
  23. S.A. Levin, L.A. Segel, Nature 259, 659 (1976) Google Scholar
  24. S.A. Levin, Ecology 73, 1943 (1992) Google Scholar
  25. P.P.G. Dyke, T. Robertson, Appl. Math. Model. 9, 429 (1985) Google Scholar
  26. R.H. Kraichnan, Phys. Fluids 10, 1417 (1967) Google Scholar
  27. J.G. Charney, J. Atmos. Sci. 28, 1087 (1971) Google Scholar
  28. Z. Neufeld, P.H. Haynes, V. Garçon, J. Sudre, Geophys. Res. Lett. 29, 1534 (2002) Google Scholar
  29. J.M.G. Vilar, R.V. Solé, J.M. Rubí, Physica A 317, 239 (2003) Google Scholar
  30. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York, 2002) Google Scholar
  31. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, New York, 1995) Google Scholar
  32. T.J. Chung, Computational Fluid Dynamics (Cambridge University Press/Cambridge, 2002) Google Scholar
  33. L.H. Weber, S.Z. El-Sayed, I. Hampton, Deep Sea Res. 33, 1327 (1986) Google Scholar
  34. M. Lesieur, R. Sadourny, Nature 294, 673 (1981) Google Scholar
  35. R.C. Smith, X. Zhang, J. Michaelsen, J. Geophys. Res. 93, 10863 (1988) Google Scholar
  36. E.R. Abraham, M.M. Bowen, Chaos 12, 373 (2002) Google Scholar
  37. A.N. Kolmogorov, CR Acad. Sci. USSR 30, 301 (1941) Google Scholar
  38. P.J.S. Franks, Mar. Ecol. Prog. Ser. 294, 295 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Instituto de Física and Centro Internacional de Física da Matéria Condensada, Universidade de BrasíliaBrasíliaBrazil
  2. 2.Departament de Física FonamentalUniversitat de BarcelonaBarcelonaSpain
  3. 3.Integrative Biological Modeling LaboratoryNew YorkUSA

Personalised recommendations