Collisions of counter-propagating pulses in coupled complex cubic-quintic Ginzburg–Landau equations

  • O. Descalzi
  • J. Cisternas
  • P. Gutiérrez
  • H. R. Brand
Article

Abstract.

We discuss the results of the interaction of counter-propagating pulses for two coupled complex cubic-quintic Ginzburg–Landau equations as they arise near the onset of a weakly inverted Hopf bifurcation. As a result of the interaction of the pulses we find in 1D for periodic boundary conditions (corresponding to an annular geometry) many different possible outcomes. These are summarized in two phase diagrams using the approach velocity, v, and the real part of the cubic cross-coupling, cr, of the counter-propagating waves as variables while keeping all other parameters fixed. The novel phase diagram in the limit v ↦0, cr ↦0 turns out to be particularly rich and includes bound pairs of 2 π holes as well as zigzag bound pairs of pulses.

Keywords

Phase Diagram European Physical Journal Special Topic Landau Equation Couple Complex Pulse Solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Kolodner, Phys. Rev. A 44, 6466 (1991) Google Scholar
  2. B.L. Winkler, P. Kolodner, J. Fluid Mech. 240, 31 (1992) Google Scholar
  3. W. Barten, M. Lücke, M. Kamps, Phys. Rev. Lett. 66, 2621 (1991) Google Scholar
  4. O. Batiste, E. Knobloch, Phys. Rev. Lett. 95, 244501 (2005) Google Scholar
  5. O. Batiste, E. Knobloch, Phys. Fluids 17, 064102 (2005) Google Scholar
  6. O. Batiste, E. Knobloch, A. Alonso, I. Mercader, J. Fluid Mech. 560, 149 (2006) Google Scholar
  7. H.H. Rotermund, S. Jakubith, A. von Oertzen, G. Ertl, Phys. Rev. Lett. 66, 3083 (1991) Google Scholar
  8. V. Petrov, S.K. Scott, K. Showalter, Phil. Trans. R. Soc. Lond. A 347, 631 (1994) Google Scholar
  9. Y. Hayase, T. Ohta, Phys. Rev. Lett. 81, 1726 (1998) Google Scholar
  10. J. Kosek, M. Marek, Phys. Rev. Lett. 74, 2134 (1995) Google Scholar
  11. H.R. Brand, R.J. Deissler, Phys. Rev. Lett. 63, 2801 (1989) Google Scholar
  12. R.J. Deissler, H.R. Brand, Phys. Rev. A 44, R3411 (1991) Google Scholar
  13. R.J. Deissler, H.R. Brand, Phys. Lett. A 146, 252 (1990) Google Scholar
  14. A.C. Newell, J.A Whitehead, J. Fluid Mech. 38, 279 (1969) Google Scholar
  15. I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002) Google Scholar
  16. O. Descalzi, J. Cisternas, H.R. Brand, Phys. Rev. E 74, 065201(R) (2006) Google Scholar
  17. O. Thual, S. Fauve, J. Phys. (France) 49, 1829 (1988) Google Scholar
  18. B.A. Malomed, Physica D 29, 155 (1987) Google Scholar
  19. S. Fauve, O. Thual, Phys. Rev. Lett. 64, 282 (1990) Google Scholar
  20. V. Hakim, Y. Pomeau, Eur. J. Mech. B/Fluids 10, 137 (1991) Google Scholar
  21. B.A. Malomed, A.A. Nepomnyashchy, Phys. Rev. A 42, 6009 (1990) Google Scholar
  22. O. Descalzi, M. Argentina, E. Tirapegui, Phys. Rev. E 67, 015601(R) (2003) Google Scholar
  23. P. Marcq, H. Chaté, R. Conte, Physica D 73, 305 (1994) Google Scholar
  24. W. van Saarloos, P.C. Hohenberg, Phys. Rev. Lett. 64, 749 (1990) Google Scholar
  25. V.V. Afanasjev, N.N. Akhmediev, J.M. Soto-Crespo, Phys. Rev. E 53, 1931 (1996) Google Scholar
  26. R.J. Deissler, H.R. Brand, Phys. Rev. Lett. 72, 478 (1994) Google Scholar
  27. H. Sakaguchi, Prog. Theor. Phys. 86, 7 (1991) Google Scholar
  28. O. Descalzi, H.R. Brand, Phys. Rev. E 72, 055202(R) (2005) Google Scholar
  29. O. Descalzi, H.R. Brand, J. Cisternas, Physica A 371, 41 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • O. Descalzi
    • 1
    • 2
  • J. Cisternas
    • 1
  • P. Gutiérrez
    • 3
  • H. R. Brand
    • 2
  1. 1.Facultad de Ingeniería, Universidad de los AndesSantiagoChile
  2. 2.Department of PhysicsUniversity of BayreuthBayreuthGermany
  3. 3.Departamento de Física, FCFMUniversidad de ChileSantiagoChile

Personalised recommendations