Ab initio and density functional theory calculations of proton affinities for volatile organic compounds

  • T. Wróblewski
  • L. Ziemczonek
  • A. M. Alhasan
  • G. P. Karwasz


The Hatree-Fock method with 6-311G** split-valence molecular orbitals basis sets and the density function theory-B3LYP have been applied to geometrical optimizations and calculations of total electronic, zero point vibrational energies and proton affinities at 298 K for volatile organic compounds. Calculated values of proton affinities are compared with experimental data.


Volatile Organic Compound European Physical Journal Special Topic Density Functional Theory Calculation Isobutane Density Functional Theory Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Stewart, The Proton: Appellation to Organic Chemistry (Academic Press, New York, 1985) Google Scholar
  2. F.A. Carrol, Perspectives on Structure and Mechanism in Organic Chemistry (Brooks-Cole, New York, 1998), p. 394 Google Scholar
  3. J. Zhao, R. Zhang, Atmos. Env. 38, 2177 (2004) CrossRefGoogle Scholar
  4. R.A. Kennedy, Ch.A. Mayhew, R. Thomas, P. Watts, Int. J. Mass Spectrom. 223–224, 627 (2003) Google Scholar
  5. A. Hansel, N. Oberhofer, W. Lindinger, V.A. Zenevich, G.B. Billing, Int. J. Mass Spectr. 185, 186, 187, 559 (1999) ADSGoogle Scholar
  6. D.A. Dixon, S.G. Lias, Molecular Structure and Energetics, Vol. 2, Physical Measurements, edited by J.F. Liebman, A. Greenberg (VCH, Deereld Beach, FL, 1987) Google Scholar
  7. M. Meot-Ner, J. Am. Chem. Soc. 101, 2396 (1979) CrossRefGoogle Scholar
  8. S.G. Lias, J.F. Liebman, R.D. Levin, J. Phys. Chem. Ref. Data 13, 695 (1984) ADSGoogle Scholar
  9. L.A. Curtiss, K. Raghavachari, P.A. Pople, J. Chem. Phys. 98, 1293 (1993) CrossRefADSGoogle Scholar
  10. J.E. Del Bene, J. Phys. Chem. 87, 367 (1983) CrossRefGoogle Scholar
  11. B.J. Smith, L. Radom, J. Phys. Chem. 99, 6468 (1995) CrossRefGoogle Scholar
  12. B.S. Jursic, J. Mol. Structure (Theochem.) 487, 193 (1999) CrossRefGoogle Scholar
  13. S. Hammerum, Chem. Phys. Lett. 300, 529 (1999) CrossRefGoogle Scholar
  14. J.L. Ozment, A.M. Schmiedekamp, Int. J. Quantum Chem. 43, 783 (1992) CrossRefGoogle Scholar
  15. D.A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976) Google Scholar
  16. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980) CrossRefADSMathSciNetGoogle Scholar
  17. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) CrossRefADSGoogle Scholar
  18. E.P.L. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998) ADSMathSciNetGoogle Scholar
  19. National Institute of Standards and Technology, Google Scholar
  20. T. Wróblewski, L. Ziemczonek, K. Szerement, G.P. Karwasz, Czech. J. Phys. B 56, B1110 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • T. Wróblewski
    • 1
  • L. Ziemczonek
    • 1
  • A. M. Alhasan
    • 1
  • G. P. Karwasz
    • 2
  1. 1.Institute of Physics, Pomeranian AcademySoł upskPoland
  2. 2.Institute of Physics, Nicolaus Copernicus UniversityToruńPoland

Personalised recommendations