Advertisement

Synchronization and modularity in complex networks

  • A. Arenas
  • A. Díaz-Guilera
Article

Abstract.

We investigate the connection between the dynamics of synchronization and the modularity on complex networks. Simulating the Kuramoto's model in complex networks we determine patterns of meta-stability and calculate the modularity of the partition these patterns provide. The results indicate that the more stable the patterns are, the larger tends to be the modularity of the partition defined by them. This correlation works pretty well in homogeneous networks (all nodes have similar connectivity) but fails when networks contain hubs, mainly because the modularity is never improved where isolated nodes appear, whereas in the synchronization process the characteristic of hubs is to have a large stability when forming its own community.

Keywords

Complex Network European Physical Journal Special Topic Community Detection Synchronization Process Synchronization Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) CrossRefADSGoogle Scholar
  2. S.H. Strogatz, Nature 410, 268 (2001) CrossRefADSGoogle Scholar
  3. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002) CrossRefADSMathSciNetGoogle Scholar
  4. M.E.J. Newman, SIAM Rev. 45, 167 (2003) MATHCrossRefMathSciNetGoogle Scholar
  5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006) CrossRefADSMathSciNetGoogle Scholar
  6. M.E.J. Newman, Eur. Phys. J. B 38, 321 (2004) CrossRefADSGoogle Scholar
  7. L. Danon, A. Díaz-Guilera, J. Duch, A. Arenas, J. Stat. Mech. P09008 (2005) Google Scholar
  8. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004) CrossRefADSGoogle Scholar
  9. U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, D. Wagner, physics/0608255 Google Scholar
  10. M.E.J. Newman, Phys. Rev. E 69, 066133 (2004) CrossRefADSGoogle Scholar
  11. A. Clauset, M.E.J. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004) CrossRefADSGoogle Scholar
  12. R. Guimerà, L.A.N. Amaral, Nature 433, 895 (2005) CrossRefADSGoogle Scholar
  13. C.P. Massen, J.P.K. Doye, Phys. Rev. E 71, 046101 (2005) CrossRefADSMathSciNetGoogle Scholar
  14. J. Duch, A. Arenas, Phys. Rev. E 72, 027104 (2005) CrossRefADSGoogle Scholar
  15. M.E.J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577 (2006) CrossRefADSGoogle Scholar
  16. J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93, 218701 (2004) CrossRefADSGoogle Scholar
  17. A.T. Winfree, The geometry of biological time (Springer-Verlag, Berlin, 2001) Google Scholar
  18. S.H. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, New York, 2003) Google Scholar
  19. Y. Kuramoto, Chemical oscillations, waves, and turbulence (Dover Publications, Mineola NY, 2003) Google Scholar
  20. F.M. Atay, T. Biyikoglu, J. Jost, IEEE Trans. Circ. Syst. 53, 92 (2006) CrossRefMathSciNetGoogle Scholar
  21. J.A. Acebron, L.L. Bonilla, C.J. Perez Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005) CrossRefADSGoogle Scholar
  22. M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89, 054101 (2002) CrossRefADSGoogle Scholar
  23. T. Nishikawa, A.E. Motter, Y.-C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91, 014101 (2003) CrossRefADSGoogle Scholar
  24. Y. Moreno, A.F. Pacheco, Europhys. Lett. 68, 603 (2004) CrossRefADSGoogle Scholar
  25. H. Hong, B.J. Kim, M.Y. Choi, H. Park, Phys. Rev. E 69, 067105 (2004) CrossRefADSGoogle Scholar
  26. A.E. Motter, C. Zhou, J. Kurths, Phys. Rev. E 71, 016116 (2005) CrossRefADSMathSciNetGoogle Scholar
  27. D.-S. Lee, Phys. Rev. E 72, 026208 (2005) CrossRefADSGoogle Scholar
  28. L. Donetti, P.I. Hurtado, M.A. Muñoz, Phys. Rev. Lett. 95, 188701 (2005) CrossRefADSGoogle Scholar
  29. M. Chavez, D.-U. Hwang, A. Amann, H.G.E. Hentschel, S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005) CrossRefADSGoogle Scholar
  30. Y. Moreno, M. Vazquez-Prada, A.F. Pacheco, Physica A 343, 279 (2004) CrossRefADSGoogle Scholar
  31. E. Oh, K. Rho, H. Hong, B. Kahng, Phys. Rev. E 72, 047101 (2005) CrossRefADSGoogle Scholar
  32. J. Gomez-Gardenes, Y. Moreno, A. Arenas, Paths to Synchronization on Complex Networks Preprint, cond-mat/0608314 Google Scholar
  33. A. Arenas, A. Díaz-Guilera, C.J. Pérez-Vicente, Phys. Rev. Lett. 96, 114102 (2006) CrossRefADSGoogle Scholar
  34. A. Arenas, A. Díaz-Guilera, C.J. Pérez-Vicente, Synchronization in Complex Networks, Physica D (in press) Google Scholar
  35. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004) CrossRefADSGoogle Scholar
  36. A. Arenas, L. Danon, A. Diaz-Guilera, P. Gleiser, R. Guimera, Euro. Phys. J. B 38, 373 (2004) CrossRefADSGoogle Scholar
  37. E. Ravasz, A.-L. Barabasi, Phys. Rev. E 67, 026112 (2003) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • A. Arenas
    • 1
  • A. Díaz-Guilera
    • 2
  1. 1.Departament d'Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Departament de Física FonamentalUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations