Advertisement

The European Physical Journal Special Topics

, Volume 141, Issue 1, pp 113–116 | Cite as

Cation mobility upon adsorption of methanol in NaY faujasite type zeolite: A molecular dynamics study compared to dielectric relaxation experiments

  • G. Maurin
  • D. Plant
  • S. Devautour-Vinot
  • A. Nicolas
  • F. Henn
  • J. C. Giuntini
Article
  • 53 Downloads

Abstract.

Molecular Dynamics simulations have been carried out to address the question of cation migration upon adsorption of methanol in NaY Faujasite system as a function of the loading. It has been shown that at low and intermediate loadings, SII cations can migrate toward the center of the supercage due strong interaction with the adsorbates, followed by hopping of SI' cations from the sodalite cage into the supercage to fill vacant SII sites. SI cations mainly remain trapped in their initial sites whatever the loading. At higher loading, only limited motion is observed for SII cations due to steric effects induced by the adsorbates within the supercage. These simulated results are in good agreement with those extracted by Complex Impedance Spectroscopy measurements, which provided the evolution of the number of extraframework cations in the different crystallographic sites as a function of the treatment temperature.

Keywords

Zeolite European Physical Journal Special Topic Mean Square Displacement Methanol Molecule Faujasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Devautour, A. Abdoulaye, J.C. Giuntini, F. Henn, J. Phys. Chem. B 105, 9297 (2001) CrossRefGoogle Scholar
  2. N.A. Ramsahye, R.G. Bell, J. Phys. Chem. B 109, 4738 (2005) CrossRefGoogle Scholar
  3. A. Philippou, M.W. Anderson, J. Am. Chem. Soc. 116, 5774 (1994) CrossRefGoogle Scholar
  4. T. Ohgushi, S. Kataoka, J. Colloid Surf. Sci. 148, 148 (1992) CrossRefGoogle Scholar
  5. J.M. Kalogeras, A. Vassilikou-Dova, Cryst. Res. Technol. 31, 693 (1996) CrossRefGoogle Scholar
  6. U. Simon, M.E. Franke, Microporous Mesoporous Mater. 41, 1 (2000) CrossRefGoogle Scholar
  7. L. Frunza, H. Kosslick, S. Frunza, A. Schönhals, J. Phys. Chem. B 106, 9191 (2002) CrossRefGoogle Scholar
  8. G. Maurin, P. Senet, S. Devautour, F. Henn, J.C. Giuntini, J. Phys. Chem. B 105, 9297 (2001) CrossRefGoogle Scholar
  9. G. Maurin, R. Bell, S. Devautour, J.C. Giuntini, F. Henn, J. Phys. Chem. B 108, 3739 (2004) CrossRefGoogle Scholar
  10. A.N. Fitch, H. Jobic, A. Renouprez, J. Phys. Chem. 90, 1311 (1986) CrossRefGoogle Scholar
  11. D. Plant, G. Maurin, R.G. Bell, J. Phys. Chem. B (in press) Google Scholar
  12. G. Maurin, P.L. Llewellyn, R. Bell, J. Phys. Chem. B 109, 16084 (2005) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • G. Maurin
    • 1
  • D. Plant
    • 1
  • S. Devautour-Vinot
    • 1
  • A. Nicolas
    • 1
  • F. Henn
    • 1
  • J. C. Giuntini
    • 1
  1. 1.Laboratoire de Physicochimie de la Matière Condensée UMR CNRS 5617, Université Montpellier IIMontpellier Cedex 05France

Personalised recommendations