The European Physical Journal Special Topics

, Volume 141, Issue 1, pp 53–56 | Cite as

Does confined water exhibit a fragile-to-strong transition?

  • J. Hedström
  • J. Swenson
  • R. Bergman
  • H. Jansson
  • S. Kittaka


The dynamics of supercooled confined water has recently been shown to have a pronounced, apparent fragile-to-strong transition (FST). Here we use broadband dielectric spectroscopy (10-2–109 Hz) to study the dynamics of water confined in silica matrices MCM-41 C10 and C18, with pore diameter of 21.4 and 36.1 Å, respectively. The local dynamics of water molecules and the dynamics of the hydroxyl groups on the inner wall of the pores are followed up to over 240 K. We argue that the reported FST for confined water is due to the vanishing of the cooperative α relaxation, which implies that it should not be interpreted as a true FST.


European Physical Journal Special Topic Hydration Level Dielectric Data Supercooled Water Nanoporous Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P.G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003) Google Scholar
  2. C.A. Angell, E.J. Sare, J. Chem. Phys. 52, 1058 (1970) CrossRefGoogle Scholar
  3. G.P. Johari, A. Hallbrucker, E. Mayer, Nature (London) 330, 552 (1987) CrossRefADSGoogle Scholar
  4. S. Cerveny, G.A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93, 245702 (2004) CrossRefADSGoogle Scholar
  5. V. Velikov, S. Borick, C.A. Angell, Science 294, 2335 (2001) CrossRefADSGoogle Scholar
  6. F.W. Starr, C.A. Angell, H.E. Stanley, Physica (Amsterdam) 323A, 51 (2003) ADSGoogle Scholar
  7. A. Minoguchi, R. Richert, C.A. Angell, Phys. Rev. Lett. 93, 215703 (2004) CrossRefADSGoogle Scholar
  8. K. Ito, C.T. Moynihan, C.A. Angell, Nature (London) 398, 492 (1999) CrossRefADSGoogle Scholar
  9. J. Swenson, R. Bergman, S. Longeville, J. Chem. Phys. 115, 11299 (2001) CrossRefADSGoogle Scholar
  10. H. Jansson, J. Swenson, Eur. Phys. J. E 12, S51 (2003) Google Scholar
  11. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, J. Chem. Phys. 121, 10843 (2004) CrossRefADSGoogle Scholar
  12. E. Mamontov, J. Chem. Phys. 123, 171101 (2005) CrossRefADSGoogle Scholar
  13. R. Bergman, J. Swenson, Nature (London) 403, 283 (2000) CrossRefADSGoogle Scholar
  14. R. Bergman, J. Swenson, L. Börjesson, P. Jacobsson, J. Chem. Phys. 113, 357 (2000) CrossRefADSGoogle Scholar
  15. J. Swenson, H. Jansson, W.S. Howells, S. Longeville, J. Chem. Phys. 122, 1 (2005) Google Scholar
  16. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, C.-Y. Mou, Phys. Rev. Lett. 95, 117802 (2005) CrossRefADSGoogle Scholar
  17. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, T. Yamaguchi, J. Phys. Chem. B 103, 5814 (1999) CrossRefGoogle Scholar
  18. T. Mori, Y. Kuroda, Y. Yoshikawa, M. Nagao, S. Kittaka, Langmuir 18, 1595 (2002) CrossRefGoogle Scholar
  19. A. Spanoudaki, B. Albela, L. Bonneviot, M. Peyrard, Eur. Phys. J. E 17, 21 (2005) CrossRefGoogle Scholar
  20. J. Hedström, J. Swenson, R. Bergman, S. Kittaka (to be published) Google Scholar
  21. A. Arbe, A. Algeria, J. Colmenero, S. Hoffman, L. Willner, D. Richter, Macromolecules 32, 7572 (1999) CrossRefGoogle Scholar
  22. G. Williams, Adv. Polym. Sci. 33, 60 (1979) Google Scholar
  23. R. Bergman, C. Svanberg, Phys. Rev. E 72, 043501 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • J. Hedström
    • 1
  • J. Swenson
    • 1
  • R. Bergman
    • 1
  • H. Jansson
    • 1
  • S. Kittaka
    • 2
  1. 1.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Department of ChemistryFaculty of Science, Okayama University of ScienceOkayamaJapan

Personalised recommendations