Skip to main content
Log in

Thermocapillary and buoyancy driven convection analysis for a hybrid nanofluids enclosed in a cavity with heated obstacle

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Two-dimensional numerical simulations are performed to investigate the problem of thermocapillary, and buoyancy driven convection. A hybrid MWCTN-Fe\(_3\)O\(_4\)-thermal oil nanofluid was used in an enclosed cavity equipped with a hot obstacle. The entire set of equations associated with the convective heat transfer phenomena in a hybrid nanofluid layer with a free surface are solved numerically using the blocked-off region method of Patankar. A parametric study varying the position, the size of the obstacle, the Marangoni number, the Rayleigh number, the volume fraction of the nanofluid has been performed. The results concern the flow profile, the temperature profile and the evolution of the Nusselt number under different conditions. It was shown that an enhancement of the convective heat transfer of more than 170% can be achieved on the cold wall just by switching the position of the obstacle from the bottom to the top.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

Ca:

Capillary number

Cp:

Specific heat capacity (J/kg C)

\({\overrightarrow{{g}}}\) :

Acceleration of gravity (m s\(^{-2})\)

h :

Obstacle height (m)

L :

Enclosure width (m)

m :

Nanoparticles shape factor

Ma:

Marangoni number

n :

Normal vector

Nu:

Nusselt number

Pr:

Prandlt number

Ra:

Thermal Rayleigh number

T :

Dimensionless temperature

t :

Time (s)

\({\overrightarrow{{U}}}\) :

Velocity (m s\(^{-1})\)

w :

Obstacle width (m)

x,y :

Cartesian coordinate (m)

\(\alpha \) :

Thermal diffusivity (m\(^{2}\) s\(^{-1})\)

\(\beta \) :

Coefficient of thermal expansion of fluid (K\(^{-1})\)

\(\lambda \) :

Thermal conductivity (W/m K)

\(\mu \) :

Dynamic viscosity (Pa s)

\(\nu \) :

Kinematic viscosity (m\(^{2}\) s\(^{-1})\)

\(\rho \) :

Density (kg m\(^{-3})\)

\(\sigma \) :

Surface tension (N m\(^{-1})\)

\(\phi \) :

Nanoparticles volume fraction (%)

\(\psi \) :

Stream function (m\(^{2}\) s\(^{-1})\)

\(\omega \) :

Vorticity (s\(^{-1})\)

ave:

Average

bf:

Fe\(_{3}\)O\(_{4\, }\)nanofluid

C:

Cold

f:

Fluid

H:

Hot

hnf:

Hybrid nanofluid

loc:

Local

References

  1. F. Selimefendigil, H.F. Öztop, Thermal management and performance improvement by using coupled effects of magnetic field and phase change material for hybrid nanoliquid convection through a 3D vented cylindrical cavity. Int. J. Heat Mass Transf. 183, 122233 (2022)

    Article  Google Scholar 

  2. D.K. Mandal, M.K. Mondal, N. Biswas, N.K. Manna, R.S.R. Gorla, A.J. Chamkha, Nanofluidic thermal-fluid transport in a split-driven porous system working under a magnetic environment (J. Num. Methods Heat Fluid Flow, Int, 2021). https://doi.org/10.1108/HFF-08-2021-0555

    Book  Google Scholar 

  3. A.J. Chamkha, F. Selimefendigil, MHD free convection and entropy generation in a corrugated cavity filled with a porous medium saturated with nanofluids. Entropy 20(11), 846 (2018)

    Article  ADS  Google Scholar 

  4. F. Selimefendigil, H.F. Öztop, Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity. Int. Commun. Heat Mass Transf. 95, 182–196 (2018)

    Article  Google Scholar 

  5. M.I. Elkhazen, W. Hassen, L. Kolsi, H.F. Oztop, A.A. Al-Rashed, M.N. Borjini, N. Abu-Hamdeh, Heat transfer intensification induced by electrically generated convection between two elliptical cylinders. Int. J. Therm. Sci. 135, 523–532 (2019)

    Article  Google Scholar 

  6. W. Hassen, M.I. Elkhazen, P. Traore, M.N. Borjini, Charge injection in horizontal eccentric annuli filled with a dielectric liquid. Eur. J. Mech. B Fluids 72, 691–700 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M.I. Elkhazen, W. Hassen, R. Gannoun, A.K. Hussein, M.N. Borjini, Numerical study of electroconvection in a dielectric layer between two cofocal elliptical cylinders subjected to unipolar injection. J. Eng. Phys. Thermophys. 92(5), 1318–1329 (2019)

    Article  Google Scholar 

  8. N. Biswas, M.K. Mondal, D.K. Mandal, N.K. Manna, R.S.R. Gorla, A.J. Chamkha, A narrative loom of hybrid nanofluid-filled wavy walled tilted porous enclosure imposing a partially active magnetic field. Int. J. Mech. Sci. 217, 107028 (2021)

    Article  Google Scholar 

  9. D.K. Mandal, N. Biswas, N.K. Manna, R.S.R. Gorla, A.J. Chamkha, Role of surface undulation during mixed bioconvective nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields. Int. J. Mech. Sci. 211, 106778 (2021)

    Article  Google Scholar 

  10. F. Selimefendigil, H.F. Öztop, Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. Int. Commun. Heat Mass Transf. 113, 104551 (2020)

    Article  Google Scholar 

  11. F. Selimefendigil, H.F. Öztop, Thermal management for conjugate heat transfer of curved solid conductive panel coupled with different cooling systems using non-Newtonian power law nanofluid applicable to photovoltaic panel systems. Int. J. Therm. Sci. 173, 107390 (2022)

    Article  Google Scholar 

  12. N. Biswas, N.K. Manna, A.J. Chamkha, D.K. Mandal, Effect of surface waviness on MHD thermo-gravitational convection of Cu\(-\) Al2O3\(-\) water hybrid nanofluid in a porous oblique enclosure. Phys. Scr. 96(10), 105002 (2021)

    ADS  Google Scholar 

  13. N.V. Ganesh, S. Javed, Q.M. Al-Mdallal, R. Kalaivanan, A.J. Chamkha, Numerical study of heat generating \(\gamma \) Al2O3-H2O nanofluid inside a square cavity with multiple obstacles of different shapes. Heliyon 6(12), e05752 (2020)

    Google Scholar 

  14. M. Boukendil, L. El Moutaouakil, Z. Zrikem, A. Abdelbaki, Coupled thermal radiation and natural convection heat transfer in a cavity with a discretely heated inner body. Mater. Today Proc. 27, 3065–3070 (2020)

    Article  Google Scholar 

  15. W. Hassen, L. Kolsi, K. Ghachem, M.A. Almeshaal, C. Maatki, M.N. Borjini, Numerical investigation of electro-thermo-convection in a square enclosure with incorporated hot solid body. J. Therm. Anal. Calorim. 143, 2647–2661 (2021)

    Article  Google Scholar 

  16. S. Hussain, S.E. Ahmed, T. Akbar, Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. Int. J. Heat Mass Transf. 114, 1054–1066 (2017)

    Article  Google Scholar 

  17. Z.H. Khan, M. Hamid, W.A. Khan, L. Sun, H. Liu, Thermal non-equilibrium natural convection in a trapezoidal porous cavity with heated cylindrical obstacles. Int. Commun. Heat Mass Transf. 126, 105460 (2021)

    Article  Google Scholar 

  18. M. Chakkingal, R. Voigt, C.R. Kleijn, S. Kenjereš, Effect of double-diffusive convection with cross gradients on heat and mass transfer in a cubical enclosure with adiabatic cylindrical obstacles. Int. J. Heat Fluid Flow 83, 108574 (2020)

    Article  Google Scholar 

  19. P.R. Santos, A. Lugarini, S.L. Junqueira, A.T. Franco, Natural convection of a viscoplastic fluid in an enclosure filled with solid obstacles. Int. J. Therm. Sci. 166, 106991 (2021)

    Article  Google Scholar 

  20. T.K. Nguyen, A. Saidizad, M. Jafaryar, M. Sheikholeslami, M.B. Gerdroodbary, R. Moradi, A. Shafee, Z. Li, Influence of various shapes of CuO nanomaterial on nanofluid forced convection within a sinusoidal channel with obstacles. Chem. Eng. Res. Des. 146, 478–485 (2019)

    Article  Google Scholar 

  21. M. Sheikholeslami, S.A. Shehzad, Z. Li, Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int. J. Heat Mass Transf. 125, 375–386 (2018)

    Article  Google Scholar 

  22. A.I. Alsabery, T. Tayebi, H.T. Kadhim, M. Ghalambaz, I. Hashim, A.J. Chamkha, Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. J. Adv. Res. 30, 63–74 (2021)

    Article  Google Scholar 

  23. F. Selimefendigil, H.F. Öztop, Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int. J. Mech. Sci. 169, 105104 (2020)

    Article  Google Scholar 

  24. Y. Ma, R. Mohebbi, M.M. Rashidi, Z. Yang, Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J. Taiwan Inst. Chem. Eng. 93, 263–276 (2018)

    Article  Google Scholar 

  25. R. Mohebbi, M. Izadi, H. Sajjadi, A.A. Delouei, M.A. Sheremet, Examining of nanofluid natural convection heat transfer in a \(\Gamma \)-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method. Phys. A 526, 120831 (2019)

    MathSciNet  MATH  Google Scholar 

  26. S.N. Nia, F. Rabiei, M.M. Rashidi, T.M. Kwang, Lattice Boltzmann simulation of natural convection heat transfer of a nanofluid in a L-shape enclosure with a baffle. Res. Phys. 19, 103413 (2020)

    Google Scholar 

  27. H. Moria, Natural convection in an L-shape cavity equipped with heating blocks and porous layers. Int. Commun. Heat Mass Transf. 126, 105375 (2021)

    Article  Google Scholar 

  28. A.H. Pordanjani, A. Jahanbakhshi, A.A. Nadooshan, M. Afrand, Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int. J. Heat Mass Transf. 121, 565–578 (2018)

    Article  Google Scholar 

  29. P.Y. Xiong, A. Hamid, K. Iqbal, M. Irfan, M. Khan, Numerical simulation of mixed convection flow and heat transfer in the lid-driven triangular cavity with different obstacle configurations. Int. Commun. Heat Mass Transf. 123, 105202 (2021)

    Article  Google Scholar 

  30. W. Hassen, F. Selimefendigil, N. Ben Khedher, L. Kolsi, M.N. Borjini, F. Alresheedi, Control of magnetohydrodynamic mixed convection and entropy generation in a porous cavity by using double rotating cylinders and curved partition. ACS Omega 6, 35607–35618 (2021)

  31. W. Hassen, L. Kolsi, H.F. Oztop, A.A.A. Al-Rashed, M.N. Borjini, K. Al-Salem, Electro-thermo-capillary-convection in a square layer of dielectric liquid subjected to a strong unipolar injection. Appl. Math. Model. 63, 349–361 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Hassen, L. Kolsi, H.A. Mohammed, K. Ghachem, M. Sheikholeslami, M.A. Almeshaal, Transient electrohydrodynamic convective flow and heat transfer of MWCNT-Dielectric nanofluid in a heated enclosure. Phys. Lett. A 384(28), 126736 (2020)

    Article  MathSciNet  Google Scholar 

  33. F. Saba, N. Ahmed, U. Khan, S.T. Mohyud-Din, A novel coupling of (CNT-Fe3O4/H2O) hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls. Int. J. Heat Mass Transf. 136, 186–195 (2019)

    Article  Google Scholar 

  34. Z. Abdelmalek, T. Tayebi, A.S. Dogonchi, A.J. Chamkha, D.D. Ganji, I. Tlili, Role of various configurations of a wavy circular heater on convective heat transfer within an enclosure filled with nanofluid. Int. Commun. Heat Mass Transf. 113, 104525 (2020)

    Article  Google Scholar 

  35. S. Patankar, Numerical heat transfer and fluid flow (CRC Press, Boca Raton, 2018)

    Book  MATH  Google Scholar 

  36. P.A. Vázquez, G.E. Georghiou, A. Castellanos, Numerical analysis of the stability of the electrohydrodynamic (EHD) electroconvection between two plates. J. Phys. D Appl. Phys. 41, 175303 (2008)

    Article  ADS  Google Scholar 

  37. A. Bejan, Convection heat transfer (Wiley, New York, 2013)

    Book  MATH  Google Scholar 

  38. M. Behnia, F. Stella, G. Gui, A numerical study of three-dimensional combined buoyancy and thermocapillary convection. Int. J. Multiphase Flow 21, 529–542 (1995)

    Article  MATH  Google Scholar 

  39. H. Asan, Natural convection in an annulus between two isothermal concentric square ducts. Int. Commun. Heat Mass Transf. 27(3), 367–376 (2000)

    Article  Google Scholar 

  40. A. Arefmanesh, M. Amini, M. Mahmoodi, M. Najafi, Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. Eur. J. Mech. B/Fluids 33, 95–104 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi Arabia through project number RG-21 035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioua Kolsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassen, W., Kolsi, L., Rajhi, W. et al. Thermocapillary and buoyancy driven convection analysis for a hybrid nanofluids enclosed in a cavity with heated obstacle. Eur. Phys. J. Spec. Top. 231, 2669–2681 (2022). https://doi.org/10.1140/epjs/s11734-022-00598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00598-3

Navigation