Skip to main content
Log in

Power spectral fractalysis: a surrogate method for laser-induced plasma temperature analysis

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper deciphers the potential of fractal analysis in unveiling the complex plasma dynamics. The light from copper plasma is focused on the slit of a spectrometer, and the spectral variations across the slit are analysed. The plasma temperature (T) computed from the spectrum at various spatial points of the slit also exhibits a variation similar to that of power spectral fractal dimension (\(D_{\text {p}})\). The study reveals a strong correlation between T and \(D_{\text {p}}\), reflecting the complex dynamics and the compositional anisotropy in plasma. At the plasma core, where the temperature is the highest, and the matter is in the ionised state, the \(D_{\text {p}}\) is high, and the lower temperature regions show a lower \(D_{\text {p}}\) value. The fractalysis helps analyse plasma temperature without knowing transition probability and the energy of the upper-level corresponding to each value of wavelength. Thus, the power spectral fractalysis can be considered a surrogate method for understanding the plasma temperature and the particle dynamics involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Wen, K.H. Cheong, Inf. Fusion 73, 87 (2021)

    Article  Google Scholar 

  2. P.S. Addison, Fractals and Chaos: An Illustrated Course (CRC Press, Boca Raton, 1997)

    Book  Google Scholar 

  3. B.B. Mandelbrot, The Fractal Geometry of Nature (WH freeman, New York, 1983)

    Book  Google Scholar 

  4. F. Brambila, Fractal Analysis: Applications in Physics, Engineering and Technology (BoD–Books on Demand, 2017)

  5. F.M. Mwema, E.T. Akinlabi, O.P. Oladijo, Advances in Materials Science and Engineering (Springer, Singapore, 2020), pp. 251–263

    Google Scholar 

  6. Q. Duan, J. An, H. Mao, D. Liang, H. Li, S. Wang, C. Huang, Materials (Basel). 14, 860 (2021)

    Article  ADS  Google Scholar 

  7. M.S. Swapna, S. Sankararaman, Nanosyst. Phys. Chem. Math. 8, 809 (2017)

    Article  Google Scholar 

  8. V. Raj, M.S. Swapna, S. Sankararaman, Commun. Theor. Phys. 73, 015402 (2021)

    Article  ADS  Google Scholar 

  9. S. Soumya, V. Raj, M.S. Swapna, S. Sankararaman, Appl. Phys. A 127, 521 (2021)

    Article  ADS  Google Scholar 

  10. M.S. Swapna, V. Raj, S. Sreejyothi, K. SatheeshKumar, S. Sankararaman, Chaos Interdiscip. J. Nonlinear Sci. 30, 073116 (2020)

    Article  Google Scholar 

  11. N.C. Kenel, D.J. Walker, Coenoses 11, 77 (1996)

    Google Scholar 

  12. S. Soumya, M.S. Swapna, V. Raj, V.P. MahadevanPillai, S. Sankararaman, Eur. Phys. J. Plus 132, 551 (2017)

    Article  Google Scholar 

  13. B. Klinkenberg, Math. Geol. 26, 23 (1994)

    Article  Google Scholar 

  14. C. Chitu, A. Dumitran, C. Manole, S. Antohe, Proc. Soc. Behav. Sci. 15, 277 (2011)

    Article  Google Scholar 

  15. C. Yang, X. Cui, Z. Zhang, S.W. Chiang, W. Lin, H. Duan, J. Li, F. Kang, C.-P. Wong, Nat. Commun. 6, 8150 (2015)

    Article  ADS  Google Scholar 

  16. M. Veinhard, O. Bonville, R. Courchinoux, R. Parreault, J.-Y. Natoli, L. Lamaignère, Opt. Lett. 42, 5078 (2017)

    Article  ADS  Google Scholar 

  17. K. Chaudhary, S.Z.H. Rizvi, J. Ali, Plasma Science and Technology—Progress in Physical States and Chemical Reactions (InTech, London, 2016)

    Google Scholar 

  18. J.P. Singh, S. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2020)

    Google Scholar 

  19. L.J. Radziemski, Spectrochim. Acta Part B At. Spectrosc. 57, 1109 (2002)

    Article  ADS  Google Scholar 

  20. S.K. HussainShah, J. Iqbal, P. Ahmad, M.U. Khandaker, S. Haq, M. Naeem, Radiat. Phys. Chem. 170, 108666 (2020)

    Article  Google Scholar 

  21. C. Ursu, P. Nica, C. Focsa, M. Agop, Complexity 2018, 1 (2018)

    Article  Google Scholar 

  22. S. Irimiciuc, G. Bulai, M. Agop, S. Gurlui, Appl. Phys. A 124, 615 (2018)

    Article  ADS  Google Scholar 

  23. M. Hanif, M. Salik, M.A. Baig, Opt. Lasers Eng. 49, 1456 (2011)

    Article  Google Scholar 

  24. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  25. P.D. Maker, R.W. Terhune, C.M. Savage, in Proceedings of the Third International Conference on Quantum Electronics, Paris, 1963, ed. by P. Grivet, N. Bloembergen. Quantum Electronics (Columbia University Press, New York, 1964), p. 1559

  26. F. Anabitarte, A. Cobo, J.M. Lopez-Higuera, ISRN Spectrosc. 2012, 1 (2012)

    Article  Google Scholar 

  27. R.J.M. Konings, Material properties/oxide fuels for light water reactors and fast neutron reactors. Comprehensive nuclear materials (Elsevier, Spain, 2012), pp. 547–578

  28. X. Fu, G. Li, D. Dong, Front. Phys. 8 (2020). https://doi.org/10.3389/fphy.2020.00068

  29. N. Kawahara, J.L. Beduneau, T. Nakayama, E. Tomita, Y. Ikeda, Appl. Phys. B Lasers Opt. 86, 605 (2007)

    Article  ADS  Google Scholar 

  30. S. Legnaioli, B. Campanella, F. Poggialini, S. Pagnotta, M.A. Harith, Z.A. Abdel-Salam, V. Palleschi, Anal. Methods 12, 1014 (2020)

    Article  Google Scholar 

  31. A. Velásquez-Ferrín, D.V. Babos, C. Marina-Montes, J. Anzano, Appl. Spectrosc. Rev. 56, 492 (2021)

    Article  ADS  Google Scholar 

  32. Z. Wang, M.S. Afgan, W. Gu, Y. Song, Y. Wang, Z. Hou, W. Song, Z. Li, TrAC Trends Anal. Chem. 143, 116385 (2021)

    Article  Google Scholar 

  33. Y.-L. Chen, J.W.L. Lewis, C. Parigger, J. Quant. Spectrosc. Radiat. Transf. 67, 91 (2000)

    Article  ADS  Google Scholar 

  34. R.L. Viana, E.C. Da Silva, T. Kroetz, I.C. Caldas, M. Roberto, M.A.F. Sanjuán, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 371 (2011)

    Article  ADS  Google Scholar 

  35. H.-H. Ley, J. Sci. Technol. 6, 49 (2014)

    Google Scholar 

  36. N. Idris, T.N. Usmawanda, K. Lahna, M. Ramli, J. Phys. Conf. Ser. 1120, 012098 (2018)

    Article  Google Scholar 

  37. M. Borghesi, S. Bulanov, D.H. Campbell, R.J. Clarke, T.Z. Esirkepov, M. Galimberti, L.A. Gizzi, A.J. MacKinnon, N.M. Naumova, F. Pegoraro, Phys. Rev. Lett. 88, 135002 (2002)

    Article  ADS  Google Scholar 

  38. A. Macchi, A.S. Nindrayog, F. Pegoraro, Phys. Rev. E 85, 46402 (2012)

    Article  ADS  Google Scholar 

  39. B. Campanella, S. Legnaioli, S. Pagnotta, F. Poggialini, V. Palleschi, Atoms 7, 57 (2019)

    Article  ADS  Google Scholar 

  40. W. Feng, Study of Laser Propagation and Soliton Formation in Strongly Magnetized Plasmas, Master Thesis, Kyoto University Research Information Repository, (2016)

  41. Y. Ralchenko, F. C. Jou, D. E. Kelleher, A. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. J. Olsen, Nist atomic spectra database (version 3.1. 0), (2006)

  42. K.K. Anoop, S.S. Harilal, R. Philip, R. Bruzzese, S. Amoruso, J. Appl. Phys. 120, 185901 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

The author declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankararaman, S. Power spectral fractalysis: a surrogate method for laser-induced plasma temperature analysis. Eur. Phys. J. Spec. Top. 230, 3881–3887 (2021). https://doi.org/10.1140/epjs/s11734-021-00328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00328-1

Navigation