Skip to main content
Log in

Continuous time random walk to a general fractional Fokker–Planck equation on fractal media

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A general fractional calculus is described using fractional operators with respect to another function, and some often used propositions are presented in this framework. Together with the continuous time random walk (CTRW), a general time-fractional Fokker–Planck equation is derived and the governing equation meets the general fractional derivative. Finally, various new probability density functions are proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Elliott Waters, W. George Herbert, Random walks on lattices II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  Google Scholar 

  2. A. Blumen, J. Klafter, B.S. White, G. Zumofen, Continuous-time random walks on fractals. Phys. Rev. Lett. 53, 1301 (1984)

    Article  ADS  Google Scholar 

  3. R. Metzler, E. Barkai, J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82, 3563 (1999)

    Article  ADS  Google Scholar 

  4. E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61, 132 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. T.J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18, 658–674 (1970)

    Article  MathSciNet  Google Scholar 

  7. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (CRC Press, Hoboken, 1993)

    MATH  Google Scholar 

  8. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B. V, Amsterdam, 2006)

  9. R. Almeida, A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. H.M. Fahad, A. Fernandez, Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations. Appl. Math. Comput. 409, 126400 (2021)

    MathSciNet  MATH  Google Scholar 

  11. J.E. Restrepo, M. Ruzhansky, D. Suragan, Explicit solutions for linear variable-coefficient fractional differential equations with respect to functions. Appl. Math. Comput. 403, 126177 (2021)

    MathSciNet  MATH  Google Scholar 

  12. H.M. Fahad, A. Fernandez, M.U. Rehman, M. Siddiqi, Tempered and Hadamard-type fractional calculus with respect to functions. Mediterr. J. Math. 18, 143 (2021)

    Article  MathSciNet  Google Scholar 

  13. F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform. Discrete Cont. Dyn. Syst. S 13, 709–722 (2020)

    MathSciNet  MATH  Google Scholar 

  14. U.N. Katugampola, New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  15. R. Garra, A. Giusti, F. Mainardi, The fractional Dodson diffusion equation: a new approach. Ricerche Mat. 67, 899–909 (2018)

    Article  MathSciNet  Google Scholar 

  16. H. Fu, G.C. Wu, G. Yang, L.L. Huang, Fractional calculus with exponential memory. Chaos 31, 031103 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Hilfer, Y. Luchko, Desiderata for fractional derivatives and integrals. Mathematics 7, 149 (2019)

    Article  Google Scholar 

  18. H.M. Fahad, M.U. Rehman, A. Fernandez, On Laplace transforms with respect to functions and their applications to fractional differential equations. Math. Method Appl. Sci. 2021, 5 (2021). https://doi.org/10.1002/mma.7772

    Article  Google Scholar 

  19. H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  ADS  Google Scholar 

  20. P. Zhou, J. Ma, J. Tang, Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 100, 2353–2364 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) (Grant nos. 62076141 and 12101338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo–Cheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Wu, G., Yang, G. et al. Continuous time random walk to a general fractional Fokker–Planck equation on fractal media. Eur. Phys. J. Spec. Top. 230, 3927–3933 (2021). https://doi.org/10.1140/epjs/s11734-021-00323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00323-6

Navigation