Skip to main content
Log in

On the topological Billingsley dimension of self-similar Sierpiński carpet

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In studying physical systems, it is usually convenient to consider their dimensions. In the classical sense, this turns around the dimension of the Euclidean space where the variables live. Next, with the discovery of non-Euclidean geometry, hidden structures, and with the technological developments, the concept of dimension have been extended to fractal cases such as Billingsley and topological ones and which are also kinds of invariants permitting to describe the irregularity hidden in irregular objects via growth laws. In the present paper, the main purpose was to extend the concept of fractal dimension by introducing a variant of the Billingsley dimension called the \(\phi \)-topological Billingsley dimension, relative to a non-negative function \(\phi \) defined on a collection of subsets of a metric space. Some connections with the topological and Hausdorff dimensions have been also discussed on the basis of the well-known self-similar Sierpiński carpet. Besides, a class of functions has been provided, for which the computation of the new dimension is possible, and where the equality holds for the upper and lower bounds of the \(\phi \)-topological Billingsley dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. Balka, Z. Buczolich, M. Elekes, Adv. Math. 274, 881–927 (2015)

    Article  MathSciNet  Google Scholar 

  2. R. Balka, Z. Buczolich, M. Elekes, Chaos Solitons Fractals 45, 1579–1589 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.S. Balankin, Phys. Lett. A 382, 141–146 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.S. Balankin, Chaos Solitons Fractals 132, 109572 (2020)

    Article  MathSciNet  Google Scholar 

  5. A.S. Balankin, Phys. Lett. A 381, 2801–2808 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.S. Balankin, Phys. Lett. A 381, 2665–2672 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.S. Balankin et al., Phys. Lett. A 382, 1534–1539 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.S. Balankin et al., Phys. Lett. A 382, 12–19 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Balka, Monatsh. Math. 174, 1–28 (2014)

    Article  MathSciNet  Google Scholar 

  10. S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal Patterns in Nonlinear Dynamics and Applications: Patterns in Nonlinear Dynamics and Applications (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  11. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions. Dimensions and Signal Analysis (Springer, Berlin, 2021)

    Book  Google Scholar 

  12. P. Billingsley, Ill. J. Math. 4, 187–209 (1960)

    Google Scholar 

  13. P. Billingsley, Ergodic Theory and Information. Wiley Series in Probability and Mathematical Statistics (1978)

  14. B. Bonnier, Y. Leroyer, C. Meyers, J. Phys. 48, 553–558 (1987)

    Article  Google Scholar 

  15. D.M. Calamas, D.G. Dannelley, G.H. Keten, J. Heat Transf. 139, 092501 (2017)

  16. C.A. DiMarco, Topol. Appl. 248, 117–127 (2018)

    Article  Google Scholar 

  17. M. Khelifi, H. Lotfi, A. Samti, B. Selmi, Chaos Solitons Fractal 140, 110091 (2020)

    Article  Google Scholar 

  18. H. Lotfi, Extr. Math. 34, 237–254 (2019)

    Google Scholar 

  19. J.H. Ma, Y.F. Zhang, Nonlinearity 33, 6053–6071 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.S. Maharana, G.P. Mishra, B.B. Mangaraj, Int. Conf. Wirel. Commun. Signal Process. Netw. (WiSPNET) 2017, 1718–1721 (2017)

    Google Scholar 

  21. D. Ntalampekos, Lecture Notes in Mathematics (Springer, Berlin, 2020)

    MATH  Google Scholar 

  22. E. Perfect, R.W. Gentry, M.C. Sukop, J.E. Lawson, Geoderma 134, 240–252 (2006)

    Article  ADS  Google Scholar 

  23. V. Radonic, K. Palmer, G. Stojanovic, V. Crnojevic-Bengin, Int. J. Antennas Propag. 2012, 980916 (2012)

    Article  Google Scholar 

  24. D. Samayoa et al., Rev. Mex. de Fís. 66, 283–290 (2020)

    Article  MathSciNet  Google Scholar 

  25. B. Selmi, Asian Eur. J. Math. 13, 2050128 (2020)

    Article  MathSciNet  Google Scholar 

  26. S. Tamegai, S. Watabe, T. Nikuni, J. Phys. Soc. Jpn. 87, 085003 (2018)

    Article  ADS  Google Scholar 

  27. Y.F. Zhang, Fractals 28, 2050115 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the editors for their valuable comments and suggestions that led to the improvement of the manuscript. This work was supported by Analysis, Probability & Fractals Laboratory (No: LR18ES17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilel Selmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Mabrouk, A., Selmi, B. On the topological Billingsley dimension of self-similar Sierpiński carpet. Eur. Phys. J. Spec. Top. 230, 3861–3871 (2021). https://doi.org/10.1140/epjs/s11734-021-00313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00313-8

Navigation