Skip to main content
Log in

Characterizing noise-induced chaos and multifractality of a finance system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this article, noise induced chaos is investigated for a finance system. To characterize chaotic paradigm, period analysis is done with the variation of a parameter and noise strength. Later on, chaos has been quantified by 0–1 tests under the same variation. A phase space analysis is also done to investigate the effect of noise on the system dynamics. However, we have noticed that the respective asymptotic dynamics of the deterministic and noise induced chaos are very similar. To classify chaos between noisy and noise free systems, multifractal analysis is then performed. Though the phase spaces are showing similar trajectories, the multifractal analysis confirms more complex dynamics of the noise induced system in compare to the deterministic model. This investigation is an application of multifractal analysis, in case of quantifying chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Takens, Lect. Notes Math. 898, 366–381 (1981)

    Article  Google Scholar 

  2. D.T. Kaplan, L. Glass, Understanding Nonlinear Dynamics (Springer, New York, 1995)

    Book  Google Scholar 

  3. S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Boston, 1994)

    Google Scholar 

  4. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  5. L. Rondoni, M.R.K. Ariffin, R. Varatharajoo, S. Mukherjee, S.K. Palit, S. Banerjee, Opt. Commun. 387, 257–266 (2017)

    Article  ADS  Google Scholar 

  6. S. He, S. Banerjee, Phys. A 501, 408–417 (2018)

    Article  MathSciNet  Google Scholar 

  7. B. Yan, S. Mukherjee, S. He, Eur. Phys. J. Spec. Top. 228, 2769–2777 (2019)

    Article  Google Scholar 

  8. S. Banerjee, M.R.K. Ariffin, Opt. Laser Tech. 45, 435–442 (2013)

    Article  ADS  Google Scholar 

  9. S.K. Palit, N.A.A. Fataf, M.R. Md Said, S. Mukherjee, S. Banerjee, Eur. Phys. J. Spec. Top. 226, 2219–2234 (2017)

    Article  Google Scholar 

  10. T.S. Dang, S.K. Palit, S. Mukherjee, T.M. Hoang, S. Banerjee, Eur. Phys. J. Spec. Top. 225, 159–170 (2016)

    Article  Google Scholar 

  11. T.M. Hoang, S.K. Palit, S. Mukherjee, S. Banerjee, Optik 127, 10930–10947 (2016)

    Article  ADS  Google Scholar 

  12. G.A. Gottwald, I. Melbourne, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460, 603 (2004)

    Article  ADS  Google Scholar 

  13. G.A. Gottwald, I. Melbourne, Phys. Rev. E 77, 028201 (2008)

    Article  ADS  Google Scholar 

  14. C. Skokos, G.A. Gottwald, J. Laskar, Lect. Notes Phys. 915, 221–247 (2016)

    Article  Google Scholar 

  15. G.A. Gottwald, I. Melbourne, Phys. D 212, 100–110 (2005)

    Article  MathSciNet  Google Scholar 

  16. R. Shone, Economic dynamics (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  17. A.L. Chian, F.A. Zorotto, E.L. Rempel, C. Rogers, Chaos Solitons Fractals 24, 869–875 (2005)

    Article  ADS  Google Scholar 

  18. A.L. Chian, E.L. Rempel, C. Rogers, Chaos Solitons Fractals 29, 1194–1218 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Sasakura, J. Macroecon. 16, 423–424 (1994)

    Article  Google Scholar 

  20. L.D. Cesare, M. Sportelli, Chaos Solitons Fractals 25, 233–244 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Fanti, P. Manfredi, Chaos Solitons Fractals 32, 736–744 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. H.W. Lorenz, Nonlinear Economic Dynamics and Chaotic Motion (Springer, New York, 1993)

    Book  Google Scholar 

  23. H.W. Lorenz, H.E. Nusse, Chaos Solitons Fractals 13, 957–965 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.H. Ma, Y.S. Chen, Appl. Math. Mech. 22, 1240–1251 (2001)

    Article  Google Scholar 

  25. J.H. Ma, Y.S. Chen, Appl. Math. Mech. 22, 1375–1382 (2001)

    Article  Google Scholar 

  26. B. Fischer, Noise. J. Financ. 41, 529–543 (1986)

    Article  Google Scholar 

  27. J.B. De Long, A. Shleifer, L.H. Summers, R.J. Waldmann, J. Polit. Econ. 98, 703–738 (1990)

    Article  Google Scholar 

  28. A. BenSaïda, Appl. Math. Comput. 226, 258–265 (2014)

    MathSciNet  Google Scholar 

  29. A. BenSaïda, Am. Int. J. Contemp. Res. 2, 57–68 (2012)

    Google Scholar 

  30. K.L.- Hansen, V.V. Nikouline, J.M. Palva, R.J. Ilmoniemi, J. Neurosci. 21, 1370–1377 (2001)

    Article  Google Scholar 

  31. F.N. Hooge, Phys. B+C 83, 14–23 (1976)

    Article  ADS  Google Scholar 

  32. S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal Patterns in Nonlinear Dynamics and Applications (CRC Press, Boca Raton, 2019)

    MATH  Google Scholar 

  33. E. Serrano, A. Figliola, Phys. A 388, 2793–2805 (2009)

Download references

Acknowledgements

N. A. A. Fataf and M. F. Abdul Rahim are grateful to National Defence University of Malaysia for funding via Short Term Grant Scheme (UPNM/2020/GPJP/SG/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. A. Fataf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Fataf, N.A.A., Rahim, M.F.A. et al. Characterizing noise-induced chaos and multifractality of a finance system. Eur. Phys. J. Spec. Top. 230, 3873–3879 (2021). https://doi.org/10.1140/epjs/s11734-021-00305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00305-8

Navigation