Skip to main content

Advertisement

Log in

Momentum distribution of Vinen turbulence in trapped atomic Bose–Einstein condensates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The decay of multicharged vortices in trapped Bose–Einstein condensates may lead to a disordered vortex state consistent with the Vinen regime of turbulence, characterized by an absence of large-scale flow and an incompressible kinetic energy spectrum \(E\propto k^{-1}\). In this work, we study numerically the dynamics of a three-dimensional harmonically trapped Bose–Einstein condensate excited to a Vinen regime of turbulence through the decay of two doubly-charged vortices. First, we study the momentum distribution and observe the emergence of a power-law behavior \(n(k)\propto k^{-3}\) consistent with the coexistence of wave turbulence. We also study the kinetic energy and particle fluxes, which allows us to identify a direct particle cascade associated with the turbulent stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.C. Tsatsos, P.E.S. Tavares, A. Cidrim, A.R. Fritsch, M.A. Caracanhas, F.E.A. dos Santos, C.F. Barenghi, V.S. Bagnato, Quantum turbulence in trapped atomic Bose–Einstein condensates. Phys. Rep. 622, 1–52 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Madeira, M.A. Caracanhas, F.E.A. dos Santos, V.S. Bagnato, Quantum turbulence in quantum gases. Annu. Rev. Condens. Matter Phys. 11(1), 37–56 (2020)

    Article  Google Scholar 

  3. P.M. Walmsley, A.I. Golov, Quantum and quasiclassical types of superfluid turbulence. Phys. Rev. Lett. 100, 245301 (2008)

    Article  ADS  Google Scholar 

  4. A.W. Baggaley, C.F. Barenghi, Y.A. Sergeev, Quasiclassical and ultraquantum decay of superfluid turbulence. Phys. Rev. B 85, 060501 (2012)

    Article  ADS  Google Scholar 

  5. Andrew W. Baggaley, Carlo F. Barenghi, Yuri A. Sergeev, Three-dimensional inverse energy transfer induced by vortex reconnections. Phys. Rev. E 89, 013002 (2014)

    Article  ADS  Google Scholar 

  6. A. Cidrim, A.C. White, A.J. Allen, V.S. Bagnato, C.F. Barenghi, Vinen turbulence via the decay of multicharged vortices in trapped atomic Bose–Einstein condensates. Phys. Rev. A 96, 023617 (2017)

    Article  ADS  Google Scholar 

  7. N.P. Müller, M.E. Brachet, A. Alexakis, P.D. Mininni, Abrupt transition between three-dimensional and two-dimensional quantum turbulence. Phys. Rev. Lett. 124(13), 134501 (2020)

    Article  ADS  Google Scholar 

  8. N. Navon, C. Eigen, J. Zhang, R. Lopes, A.L. Gaunt, K. Fujimoto, M. Tsubota, R.P. Smith, Z. Hadzibabic, Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Science 366(6463), 382–385 (2019)

    Article  Google Scholar 

  9. A.D. García-Orozco, L. Madeira, L. Galantucci, C.F. Barenghi, V.S. Bagnato, Intra-scales energy transfer during the evolution of turbulence in a trapped Bose–Einstein condensate. arxiv:2002.01267, (2020)

  10. Y. Shin, M. Saba, M. Vengalattore, T.A. Pasquini, C. Sanner, A.E. Leanhardt, M. Prentiss, D.E. Pritchard, W. Ketterle, Dynamical instability of a doubly quantized vortex in a Bose–Einstein condensate. Phys. Rev. Lett. 93, 160406 (2004)

    Article  ADS  Google Scholar 

  11. J.A.M. Huhtamäki, M. Möttönen, T. Isoshima, V. Pietilä, S.M.M. Virtanen, Splitting times of doubly quantized vortices in dilute Bose–Einstein condensates. Phys. Rev. Lett. 97, 110406 (2006)

    Article  ADS  Google Scholar 

  12. A. Muñoz Mateo, V. Delgado, Dynamical evolution of a doubly quantized vortex imprinted in a Bose–Einstein condensate. Phys. Rev. Lett. 97, 180409 (2006)

    Article  ADS  Google Scholar 

  13. Ashton S. Bradley, Brian P. Anderson, Energy spectra of vortex distributions in two-dimensional quantum turbulence. Phys. Rev. X 2, 041001 (2012)

    Google Scholar 

  14. S. Nazarenko, Wave Turbulence, vol. 825 (Springer Science & Business Media, Berlin, 2011).

    Book  Google Scholar 

  15. Kazuya Fujimoto, Makoto Tsubota, Bogoliubov-wave turbulence in Bose–Einstein condensates. Phys. Rev. A 91(5), 053620 (2015)

    Article  ADS  Google Scholar 

  16. K.J. Thompson, G.G. Bagnato, G.D. Telles, M.A. Caracanhas, F.E.A. dos Santos, V.S. Bagnato, Evidence of power law behavior in the momentum distribution of a turbulent trapped Bose–Einstein condensate. Laser Phys. Lett. 11(1), 015501 (2013)

    Article  ADS  Google Scholar 

  17. N. Navon, A.L. Gaunt, R.P. Smith, Z. Hadzibabic, Emergence of a turbulent cascade in a quantum gas. Nature 539, 72 (2016)

    Article  ADS  Google Scholar 

  18. Sergey Nazarenko, Differential approximation for Kelvin wave turbulence. J. Exp. Theor. Phys. Lett. 83(5), 198–200 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation (FAPESP) under the Grants 2013/07276-1, 2014/50857-8, 2017/09390-7, and 2018/09191-7, and by the National Council for Scientific and Technological Development (CNPq) under the Grant 465360/2014-9.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FEAS and VSB; methodology, LM and AC; software, AVMM and AC; formal analysis, LM and AC; writing–original draft preparation, LM and AC; writing–review and editing, FEAS and VSB; visualization, AVMM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lucas Madeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marino, Á.V.M., Madeira, L., Cidrim, A. et al. Momentum distribution of Vinen turbulence in trapped atomic Bose–Einstein condensates. Eur. Phys. J. Spec. Top. 230, 809–812 (2021). https://doi.org/10.1140/epjs/s11734-021-00083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00083-3

Navigation