Isochronous n-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability

Abstract

Within the standard Lagrangian settings (i.e., the difference between kinetic and potential energies), we discuss and report isochronicity, linearizability and exact solubility of some n-dimensional nonlinear position-dependent mass (PDM) oscillators. In the process, negative the gradient of the PDM potential force field is shown to be no longer related to the time derivative of the canonical momentum, \(\mathbf {p} =m\left( r\right) \dot{\mathbf {r}}\), but it is rather related to the time derivative of the pseudo-momentum, \(\varvec{\pi }\left( r\right) =\sqrt{ m\left( r\right) }\dot{\mathbf {r}}\) (i.e., Noether momentum). Moreover, using some point transformation recipe, we show that the linearizability of the n-dimensional nonlinear PDM-oscillators is only possible for \(n=1\) but not for \(n\ge 2\). The Euler–Lagrange invariance falls short/incomplete for \(n\ge 2\) under PDM settings. Alternative invariances are sought, therefore. Such invariances, like Newtonian invariance of Mustafa (Phys Scr 95:065214, 2020), effectively authorize the use of the exact solutions of one system to find the solutions of the other. A sample of isochronous n-dimensional nonlinear PDM-oscillators examples is reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    P.M. Mathews, M. Lakshmanan, Q. Appl. Math. 32, 215 (1974)

    Article  Google Scholar 

  2. 2.

    A.K. Tiwari, S.N. Pandey, M. Santhilvelan, M. Lakshmanan, J. Math. Phys. 54, 053506 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    M. Lakshmanan, V.K. Chandrasekar, Eur. Phys. J. Spec. Top. 222, 665 (2013)

    Article  Google Scholar 

  4. 4.

    R.G. Pradeep, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, J. Math. Phys. 50, 052901 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    O. Mustafa, J. Phys. A Math. Theor. 48, 225206 (2015)

    ADS  Article  Google Scholar 

  6. 6.

    J.F. Cariñena, M.F. Rañada, M. Santander, J. Phys. A Math. Theor. 50, 465202 (2017)

    ADS  Article  Google Scholar 

  7. 7.

    J.F. Cariñena, M.F. Rañada, M. Santander, M. Senthilvelan, Nonlinearity 17, 1941 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    A. Bhuvaneswari, V.K. Chandrasekar, M. Santhilvelan, M. Lakshmanan, J. Math. Phys. 53, 073504 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos, and Patterns (Springer, Berlin, 2003)

    Google Scholar 

  10. 10.

    I. Boussaada, A.R. Chouikha, J.M. Strelcyn, Bull. Sci. Math. 135, 89 (2011)

    MathSciNet  Article  Google Scholar 

  11. 11.

    M. Bardet, I. Boussaada, A.R. Chouikha, J.M. Strelcyn, Bull. Sci. Math. 135, 230 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    O. Von Roos, Phys. Rev. B 27, 7547 (1983)

    ADS  Article  Google Scholar 

  13. 13.

    J.M. Levy-Leblond, Phys. Rev. A 52, 1845 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    O. Mustafa, J. Phys. A Math. Theor. 46, 368001 (2013)

    Article  Google Scholar 

  15. 15.

    O. Mustafa, J. Phys. A Math. Theor. 52, 148001 (2019)

    ADS  Article  Google Scholar 

  16. 16.

    O. Mustafa, Z. Algadhi, Eur. Phys. J. Plus 134, 228 (2019)

    Article  Google Scholar 

  17. 17.

    R. Koc, G. Sahinoglu, M. Koca, Eur. Phys. J. B 48, 583 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    A. Khlevniuk, V. Tymchyshyn, J. Math. Phys. 59, 082901 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    C. Quesne, V.M. Tkachuk, J. Phys. A 37, 4267 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    J.F. Cariñena, M.F. Rañada, M. Santander, Regul. Chaotic Dyn. 10, 423 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    J.F. Cariñena, F.J. Herranz, M.F. Rañada, J. Math. Phys. 58, 022701 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    S. Cruz y Cruz, J. Negro, L.M. Nieto, Phys. Lett. A 369, 400 (2007)

  23. 23.

    A. de Souza Dutra, C.A.S. Almeida, Phys. Lett. A 275, 25 (2000)

  24. 24.

    S. Cruz y Cruz, O. Rosas-Ortiz, J. Phys. A: Math. Theor. 42, 185205 (2009)

  25. 25.

    O. Mustafa, S.H. Mazharimousavi, Phys. Lett. A 358, 259 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002)

    ADS  Article  Google Scholar 

  27. 27.

    O. Mustafa, S.H. Mazharimousavi, J. Phys. A Math. Gen. 39, 10537 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    O. Mustafa, S.H. Mazharimousavi, Int. J. Theor. Phys. 46, 1786 (2007)

    Article  Google Scholar 

  29. 29.

    O. Mustafa, S.H. Mazharimousavi, J. Phys. A Math. Theor. 41, 244020 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    O. Mustafa, J. Phys. A Math. Theor. 43, 385310 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    O. Mustafa, J. Phys. A Math. Theor. 44, 355303 (2011)

    Article  Google Scholar 

  32. 32.

    M. Ranada, M.A. Rodrigues, M. Santander, J. Math. Phys. 51, 042901 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    B. Bagchi, A. Banerjee, C. Quesne, V.M. Tkachuk, J. Phys. A 38, 2929 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    C. Quesne, J. Math. Phys. 56, 012903 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    F. Calogero, Isochronous Systems (Oxford University Press, Oxford, 2008)

    Google Scholar 

  36. 36.

    F. Calogero, F. Leyvraz, J. Phys. A Math. Theor. 41, 175202 (2008)

    ADS  Article  Google Scholar 

  37. 37.

    F. Calogero, F. Leyvraz, J. Phys. A Math. Theor. 39, 11803 (2006)

    ADS  Google Scholar 

  38. 38.

    F. Calogero, F. Leyvraz, J. Phys. A Math. Theor. 40, 12931 (2007)

    ADS  Article  Google Scholar 

  39. 39.

    P. Guha, A.G. Choudhury, J. Phys. A Math. Theor. 42, 192001 (2009)

    ADS  Article  Google Scholar 

  40. 40.

    A.D. Devi, R.G. Pradeep, V.K. Chandrasekar, M. Lakshmanan, J. Nonlinear Math. Phys. 20, 78 (2013)

    MathSciNet  Article  Google Scholar 

  41. 41.

    A.D. Devi, R.G. Pradeep, V.K. Chandrasekar, M. Lakshmanan, J. Eng. Math. 104, 63 (2017)

    Article  Google Scholar 

  42. 42.

    O. Mustafa, Phys. Scr. 95, 065214 (2020)

    ADS  Article  Google Scholar 

  43. 43.

    O. Mustafa, Phys. Lett. A 384, 126265 (2020)

    MathSciNet  Article  Google Scholar 

  44. 44.

    O. Mustafa, Z. Algadhi, Chin. J. Phys. 65, 554 (2020)

  45. 45.

    Z. Algadhi, O. Mustafa, Ann. Phys. 418, 168185 (2020)

    Article  Google Scholar 

  46. 46.

    C. Quesne, Eur. Phys. J. Plus 134, 391 (2019)

    Article  Google Scholar 

  47. 47.

    R.A. El-Nabulsi, Few-Body Syst. 61, 37 (2020)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Omar Mustafa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mustafa, O. Isochronous n-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability. Eur. Phys. J. Plus 136, 249 (2021). https://doi.org/10.1140/epjp/s13360-021-01250-0

Download citation