Skip to main content
Log in

Isochronous n-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Within the standard Lagrangian settings (i.e., the difference between kinetic and potential energies), we discuss and report isochronicity, linearizability and exact solubility of some n-dimensional nonlinear position-dependent mass (PDM) oscillators. In the process, negative the gradient of the PDM potential force field is shown to be no longer related to the time derivative of the canonical momentum, \(\mathbf {p} =m\left( r\right) \dot{\mathbf {r}}\), but it is rather related to the time derivative of the pseudo-momentum, \(\varvec{\pi }\left( r\right) =\sqrt{ m\left( r\right) }\dot{\mathbf {r}}\) (i.e., Noether momentum). Moreover, using some point transformation recipe, we show that the linearizability of the n-dimensional nonlinear PDM-oscillators is only possible for \(n=1\) but not for \(n\ge 2\). The Euler–Lagrange invariance falls short/incomplete for \(n\ge 2\) under PDM settings. Alternative invariances are sought, therefore. Such invariances, like Newtonian invariance of Mustafa (Phys Scr 95:065214, 2020), effectively authorize the use of the exact solutions of one system to find the solutions of the other. A sample of isochronous n-dimensional nonlinear PDM-oscillators examples is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.M. Mathews, M. Lakshmanan, Q. Appl. Math. 32, 215 (1974)

    Article  Google Scholar 

  2. A.K. Tiwari, S.N. Pandey, M. Santhilvelan, M. Lakshmanan, J. Math. Phys. 54, 053506 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Lakshmanan, V.K. Chandrasekar, Eur. Phys. J. Spec. Top. 222, 665 (2013)

    Article  Google Scholar 

  4. R.G. Pradeep, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, J. Math. Phys. 50, 052901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. O. Mustafa, J. Phys. A Math. Theor. 48, 225206 (2015)

    Article  ADS  Google Scholar 

  6. J.F. Cariñena, M.F. Rañada, M. Santander, J. Phys. A Math. Theor. 50, 465202 (2017)

    Article  ADS  Google Scholar 

  7. J.F. Cariñena, M.F. Rañada, M. Santander, M. Senthilvelan, Nonlinearity 17, 1941 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Bhuvaneswari, V.K. Chandrasekar, M. Santhilvelan, M. Lakshmanan, J. Math. Phys. 53, 073504 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos, and Patterns (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  10. I. Boussaada, A.R. Chouikha, J.M. Strelcyn, Bull. Sci. Math. 135, 89 (2011)

    Article  MathSciNet  Google Scholar 

  11. M. Bardet, I. Boussaada, A.R. Chouikha, J.M. Strelcyn, Bull. Sci. Math. 135, 230 (2011)

    Article  MathSciNet  Google Scholar 

  12. O. Von Roos, Phys. Rev. B 27, 7547 (1983)

    Article  ADS  Google Scholar 

  13. J.M. Levy-Leblond, Phys. Rev. A 52, 1845 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. O. Mustafa, J. Phys. A Math. Theor. 46, 368001 (2013)

    Article  Google Scholar 

  15. O. Mustafa, J. Phys. A Math. Theor. 52, 148001 (2019)

    Article  ADS  Google Scholar 

  16. O. Mustafa, Z. Algadhi, Eur. Phys. J. Plus 134, 228 (2019)

    Article  Google Scholar 

  17. R. Koc, G. Sahinoglu, M. Koca, Eur. Phys. J. B 48, 583 (2005)

    Article  ADS  Google Scholar 

  18. A. Khlevniuk, V. Tymchyshyn, J. Math. Phys. 59, 082901 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Quesne, V.M. Tkachuk, J. Phys. A 37, 4267 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.F. Cariñena, M.F. Rañada, M. Santander, Regul. Chaotic Dyn. 10, 423 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.F. Cariñena, F.J. Herranz, M.F. Rañada, J. Math. Phys. 58, 022701 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Cruz y Cruz, J. Negro, L.M. Nieto, Phys. Lett. A 369, 400 (2007)

  23. A. de Souza Dutra, C.A.S. Almeida, Phys. Lett. A 275, 25 (2000)

  24. S. Cruz y Cruz, O. Rosas-Ortiz, J. Phys. A: Math. Theor. 42, 185205 (2009)

  25. O. Mustafa, S.H. Mazharimousavi, Phys. Lett. A 358, 259 (2006)

    Article  ADS  Google Scholar 

  26. A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002)

    Article  ADS  Google Scholar 

  27. O. Mustafa, S.H. Mazharimousavi, J. Phys. A Math. Gen. 39, 10537 (2006)

    Article  ADS  Google Scholar 

  28. O. Mustafa, S.H. Mazharimousavi, Int. J. Theor. Phys. 46, 1786 (2007)

    Article  Google Scholar 

  29. O. Mustafa, S.H. Mazharimousavi, J. Phys. A Math. Theor. 41, 244020 (2008)

    Article  ADS  Google Scholar 

  30. O. Mustafa, J. Phys. A Math. Theor. 43, 385310 (2010)

    Article  ADS  Google Scholar 

  31. O. Mustafa, J. Phys. A Math. Theor. 44, 355303 (2011)

    Article  Google Scholar 

  32. M. Ranada, M.A. Rodrigues, M. Santander, J. Math. Phys. 51, 042901 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. B. Bagchi, A. Banerjee, C. Quesne, V.M. Tkachuk, J. Phys. A 38, 2929 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Quesne, J. Math. Phys. 56, 012903 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. F. Calogero, Isochronous Systems (Oxford University Press, Oxford, 2008)

    Book  MATH  Google Scholar 

  36. F. Calogero, F. Leyvraz, J. Phys. A Math. Theor. 41, 175202 (2008)

    Article  ADS  Google Scholar 

  37. F. Calogero, F. Leyvraz, J. Phys. A Math. Theor. 39, 11803 (2006)

    ADS  Google Scholar 

  38. F. Calogero, F. Leyvraz, J. Phys. A Math. Theor. 40, 12931 (2007)

    Article  ADS  Google Scholar 

  39. P. Guha, A.G. Choudhury, J. Phys. A Math. Theor. 42, 192001 (2009)

    Article  ADS  Google Scholar 

  40. A.D. Devi, R.G. Pradeep, V.K. Chandrasekar, M. Lakshmanan, J. Nonlinear Math. Phys. 20, 78 (2013)

    Article  MathSciNet  Google Scholar 

  41. A.D. Devi, R.G. Pradeep, V.K. Chandrasekar, M. Lakshmanan, J. Eng. Math. 104, 63 (2017)

    Article  Google Scholar 

  42. O. Mustafa, Phys. Scr. 95, 065214 (2020)

    Article  ADS  Google Scholar 

  43. O. Mustafa, Phys. Lett. A 384, 126265 (2020)

    Article  MathSciNet  Google Scholar 

  44. O. Mustafa, Z. Algadhi, Chin. J. Phys. 65, 554 (2020)

  45. Z. Algadhi, O. Mustafa, Ann. Phys. 418, 168185 (2020)

    Article  Google Scholar 

  46. C. Quesne, Eur. Phys. J. Plus 134, 391 (2019)

    Article  Google Scholar 

  47. R.A. El-Nabulsi, Few-Body Syst. 61, 37 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Mustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, O. Isochronous n-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability. Eur. Phys. J. Plus 136, 249 (2021). https://doi.org/10.1140/epjp/s13360-021-01250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01250-0

Navigation