Generalized tanh-shaped hyperbolic potential: bound state solution of Schrödinger equation

Abstract

The development of potential theory offers compelling coarse-grained descriptions of fundamental interactions in quantum field theory. In this paper, we propose \(V(r)=V_{1}+V_{2}\tanh (\alpha {r})+V_{3}\tanh ^{2}(\alpha {r})\) generalized tanh-shaped hyperbolic potential, which in itself contains several important physical potentials. Next, we present the bound state solution of the modified radial Schrödinger equation with this potential by using the Nikiforov–Uvarov method. The obtained energy eigenvalues and corresponding radial wave functions are expressed in terms of the Jacobi polynomials for arbitrary l states. It is also shown that the energy eigenvalues are sensitively associated with potential parameters for quantum states. The generalized tanh-shaped hyperbolic potential and its obtained energy eigenvalues are in excellent overlap with the already reported results in some instances. Altogether, the potential model is predicted to be a possible candidate for prescribing multiple quantum systems simultaneously.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    V.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations (Dordrecht Kluwer Academic Publishers, 1990), http://openlibrary.org/books/OL2204930M

  2. 2.

    W.  Greiner, Relativistic Quantum Mechanics. Wave Equations (Springer, Berlin, 2001), https://doi.org/10.1007/978-3-662-04275-5

  3. 3.

    S.-H. Dong, Factorization Method in Quantum Mechanics (Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5796-0

  4. 4.

    L. Boivin, F .X. Kärtner, H .A. Haus, Phys. Rev. Lett. 73, 240 (1994). https://doi.org/10.1103/PhysRevLett.73.240

    ADS  Article  Google Scholar 

  5. 5.

    I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004). https://doi.org/10.1103/PhysRevLett.93.020402

    ADS  Article  Google Scholar 

  6. 6.

    M. Belić, N. Petrović, W.-P. Zhong, R.-H. Xie, G. Chen, Phys. Rev. Lett. 101, 123904 (2008). https://doi.org/10.1103/PhysRevLett.101.123904

    ADS  Article  Google Scholar 

  7. 7.

    S.L. Garavelli, F.A. Oliveira, Phys. Rev. Lett. 66, 1310 (1991). https://doi.org/10.1103/PhysRevLett.66.1310

    ADS  Article  Google Scholar 

  8. 8.

    S. Flügge, Practical Quantum Mechanics. (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-61995-3

  9. 9.

    B. Schneider, H. Gharibnejad, Nat. Rev. Phys. 2, 89 (2020). https://doi.org/10.1038/s42254-019-0126-3

    Article  Google Scholar 

  10. 10.

    E. Witten, Nucl. Phys. B 188, 513 (1981). https://doi.org/10.1016/0550-3213(81)90006-7

    ADS  Article  Google Scholar 

  11. 11.

    E.  Kreyszig, Advanced Engineering Mathematics ( Wiley, 2006), https://archive.org/details/AdvancedEngineeringMathematicsKreyszigE.9thEdWiley20061245s/page/n1243/mode/2up

  12. 12.

    C. Grosche, J. Phys. A Math. Gen. 28, 5889 (1995). https://doi.org/10.1088/0305-4470/28/20/018

    ADS  Article  Google Scholar 

  13. 13.

    A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics ( Birkhäuser Basel, 1988), https://doi.org/10.1007/978-1-4757-1595-8

  14. 14.

    A. Polyakov, Phys. Lett. B 103, 207 (1981). https://doi.org/10.1016/0370-2693(81)90743-7

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    A. Vilenkin, Phys. Rev. D 50, 2581 (1994). https://doi.org/10.1103/PhysRevD.50.2581

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    J. Socorro, M. D’Oleire, Phys. Rev. D 82, 044008 (2010). https://doi.org/10.1103/PhysRevD.82.044008

    ADS  Article  Google Scholar 

  17. 17.

    A.P. Rebesh, B.I. Lev, Phys. Rev. D 100, 123533 (2019). https://doi.org/10.1103/PhysRevD.100.123533

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    X.-Q. Song, C.-W. Wang, C.-S. Jia, Chem. Phys. Lett. 673, 50 (2017). https://doi.org/10.1016/j.cplett.2017.02.010

    ADS  Article  Google Scholar 

  19. 19.

    C.-S. Jia, L.-H. Zhang, C.-W. Wang, Chem. Phys. Lett. 667, 211 (2017). https://doi.org/10.1016/j.cplett.2016.11.059

    ADS  Article  Google Scholar 

  20. 20.

    J.T. Cole, K.G. Makris, Z.H. Musslimani, D.N. Christodoulides, S. Rotter, Phys. Rev. A 93, 013803 (2016). https://doi.org/10.1103/PhysRevA.93.013803

    ADS  Article  Google Scholar 

  21. 21.

    A. Pivano, V.O. Dolocan, Phys. Rev. B 101, 014438 (2020). https://doi.org/10.1103/PhysRevB.101.014438

    ADS  Article  Google Scholar 

  22. 22.

    A. Dechant, F. Kindermann, A. Widera, E. Lutz, Phys. Rev. Lett. 123, 070602 (2019). https://doi.org/10.1103/PhysRevLett.123.070602

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    R.F.G. Ruiz, R. Berger, J. Billowes, C.L. Binnersley, M.L. Bissell, A.A. Breier, A.J. Brinson, K. Chrysalidis, T.E. Cocolios, B.S. Cooper, K.T. Flanagan, T.F. Giesen, R.P. de Groote, S. Franchoo, F.P. Gustafsson, T.A. Isaev, A. Koszorús, G. Neyens, H.A. Perrett, C.M. Ricketts, S. Rothe, L. Schweikhard, A.R. Vernon, K.D.A. Wendt, F. Wienholtz, S.G. Wilkins, X.F. Yang, Nature 581, 396 (2020). https://doi.org/10.1038/s41586-020-2299-4

    ADS  Article  Google Scholar 

  24. 24.

    D.E.M. Hoff, A.M. Rogers, S.M. Wang, P.C. Bender, K. Brandenburg, K. Childers, J.A. Clark, A.C. Dombos, E.R. Doucet, S. Jin, R. Lewis, S.N. Liddick, C.J. Lister, Z. Meisel, C. Morse, W. Nazarewicz, H. Schatz, K. Schmidt, D. Soltesz, S.K. Subedi, S. Waniganeththi, Nature 580, 52 (2020). https://doi.org/10.1038/s41586-020-2123-1

    ADS  Article  Google Scholar 

  25. 25.

    L. Hulthén, Ark. Mat. Astron. Fys. 28A, 5 (1942)

    MathSciNet  Google Scholar 

  26. 26.

    O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A Math. Gen. 39, 11521 (2006). https://doi.org/10.1088/0305-4470/39/37/012

    ADS  Article  Google Scholar 

  27. 27.

    Y.C.B. Gönül, O. Özer, M. Koçak, Phys. Lett. A 275, 238 (2000). https://doi.org/10.1016/S0375-9601(00)00590-9

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    H.I. Ahmadov, S.I. Jafarzade, M.V. Qocayeva, Int. J. Mod. Phys. A 30, 1550193 (2015). https://doi.org/10.1142/S0217751X15501936

    ADS  Article  Google Scholar 

  29. 29.

    H.I. Ahmadov, M.V. Qocayeva, N.S. Huseynova, Int. J. Mod. Phys. E 26, 1750028 (2017). https://doi.org/10.1142/S0218301317500288

    ADS  Article  Google Scholar 

  30. 30.

    A. Ahmadov, S. Aslanova, M. Orujova, S. Badalov, S.-H. Dong, Phys. Lett. A 383, 3010 (2019). https://doi.org/10.1016/j.physleta.2019.06.043

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    B.C. Lütfüoğlu, A.N. Ikot, U.S. Okorie, A.T. Ngiangia, Commun. Theor. Phys. 71, 1127 (2019). https://doi.org/10.1088/0253-6102/71/9/1127

    ADS  Article  Google Scholar 

  32. 32.

    S. Ikhdair, R. Sever, J. Math. Chem. 42, 461 (2007). https://doi.org/10.1007/s10910-006-9115-8

    MathSciNet  Article  Google Scholar 

  33. 33.

    M. Simsek, H. Egrifes, J. Phys. A Math. Gen. 37, 4379 (2004). https://doi.org/10.1088/0305-4470/37/15/007

    ADS  Article  Google Scholar 

  34. 34.

    P.M. Morse, Phys. Rev. 34, 57 (1929). https://doi.org/10.1103/PhysRev.34.57

    ADS  Article  Google Scholar 

  35. 35.

    C. Berkdemir, J. Han, Chem. Phys. Lett. 409, 203 (2005). https://doi.org/10.1016/j.cplett.2005.05.021

    ADS  Article  Google Scholar 

  36. 36.

    W.-C. Qiang, S.-H. Dong, Phys. Lett. A 363, 169 (2007a). https://doi.org/10.1016/j.physleta.2006.10.091

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    M.F. Manning, N. Rosen, Phys. Rev. 44, 951 (1933). https://doi.org/10.1103/PhysRev.44.951

    Article  Google Scholar 

  38. 38.

    A.I. Ahmadov, M. Demirci, S.M. Aslanova, M.F. Mustamin, Phys. Lett. A 384, 126372 (2020). https://doi.org/10.1016/j.physleta.2020.126372

    MathSciNet  Article  Google Scholar 

  39. 39.

    S.-H. Dong, J. García-Ravelo, Phys. Scr. 75, 307 (2007). https://doi.org/10.1088/0031-8949/75/3/013

    ADS  MathSciNet  Article  Google Scholar 

  40. 40.

    W.-C. Qiang, S.-H. Dong, Phys. Lett. A 368, 13 (2007b). https://doi.org/10.1016/j.physleta.2007.03.057

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    G.-F. Wei, S.-H. Dong, Phys. Lett. A 373, 49 (2008). https://doi.org/10.1016/j.physleta.2008.10.064

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    W.-C. Qiang, S.-H. Dong, Phys. Scr. 79, 045004 (2009). https://doi.org/10.1088/0031-8949/79/04/045004

    ADS  Article  Google Scholar 

  43. 43.

    H.I. Ahmadov, C. Aydin, N.S. Huseynova, O. Uzun, Int. J. Mod. Phys. E 22, 1350072 (2013). https://doi.org/10.1142/S0218301313500729

    ADS  Article  Google Scholar 

  44. 44.

    A.I. Ahmadov, C. Aydin, O. Uzun, Int. J. Mod. Phys. A 29, 1450002 (2014). https://doi.org/10.1142/S0217751X1450002X

    ADS  Article  Google Scholar 

  45. 45.

    R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577 (1954). https://doi.org/10.1103/PhysRev.95.577

    ADS  Article  Google Scholar 

  46. 46.

    V.H. Badalov, H.I. Ahmadov, A.I. Ahmadov, Int. J. Mod. Phys. E 18, 631 (2009). https://doi.org/10.1142/S0218301309012756

    ADS  Article  Google Scholar 

  47. 47.

    V.H. Badalov, H.I. Ahmadov, S.V. Badalov, Int. J. Mod. Phys. E 19, 1463 (2010). https://doi.org/10.1142/S0218301310015862

    ADS  Article  Google Scholar 

  48. 48.

    V.H. Badalov, Int. J. Mod. Phys. E 25, 1650002 (2016). https://doi.org/10.1142/S0218301316500026

    ADS  Article  Google Scholar 

  49. 49.

    V.H. Badalov, B. Baris, K. Uzun, Mod. Phys. Lett. A 34, 1950107 (2019). https://doi.org/10.1142/S0217732319501074

    ADS  Article  Google Scholar 

  50. 50.

    B.C. Lütfüoğlu, Commun. Theor. Phys. 69, 23 (2018a). https://doi.org/10.1088/0253-6102/69/1/23

    ADS  Article  Google Scholar 

  51. 51.

    B.C. Lütfüoğlu, A.N. Ikot, E.O. Chukwocha, F.E. Bazuaye, Eur. Phys. J. Plus 133, 528 (2018). https://doi.org/10.1140/epjp/i2018-12299-y

    Article  Google Scholar 

  52. 52.

    B.C. Lütfüoğlu, Eur. Phys. J. Plus 133, 309 (2018b). https://doi.org/10.1140/epjp/i2018-12114-y

    Article  Google Scholar 

  53. 53.

    B.C. Lütfüoğlu, J. Kříž, Eur. Phys. J. Plus 134, 60 (2019). https://doi.org/10.1140/epjp/i2019-12401-1

    Article  Google Scholar 

  54. 54.

    T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, Y. Utsuno, Rev. Mod. Phys. 92, 015002 (2020). https://doi.org/10.1103/RevModPhys.92.015002

    ADS  Article  Google Scholar 

  55. 55.

    X. Zou, L.-Z. Yi, C.-S. Jia, Phys. Lett. A 346, 54 (2005). https://doi.org/10.1016/j.physleta.2005.07.075

    ADS  MathSciNet  Article  Google Scholar 

  56. 56.

    C.-S. Jia, P. Guo, X.-L. Peng, J. Phys. A Math. Gen. 39, 7737 (2006). https://doi.org/10.1088/0305-4470/39/24/010

    ADS  Article  Google Scholar 

  57. 57.

    C. Eckart, Phys. Rev. 35, 1303 (1930). https://doi.org/10.1103/PhysRev.35.1303

    ADS  Article  Google Scholar 

  58. 58.

    N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932). https://doi.org/10.1103/PhysRev.42.210

    ADS  Article  Google Scholar 

  59. 59.

    L.-Z. Yi, Y.-F. Diao, J.-Y. Liu, C.-S. Jia, Phys. Lett. A 333, 212 (2004). https://doi.org/10.1016/j.physleta.2004.10.054

    ADS  MathSciNet  Article  Google Scholar 

  60. 60.

    H. Eğrifes, D. Demirhan, F. Büyükkılıç, Phys. Lett. A 275, 229 (2000). https://doi.org/10.1016/S0375-9601(00)00592-2

    ADS  MathSciNet  Article  Google Scholar 

  61. 61.

    C.-S. Jia, X.-L. Zeng, L.-T. Sun, Phys. Lett. A 294, 185 (2002). https://doi.org/10.1016/S0375-9601(01)00840-4

    ADS  MathSciNet  Article  Google Scholar 

  62. 62.

    C.-S. Jia, Y. Li, Y. Sun, J.-Y. Liu, L.-T. Sun, Phys. Lett. A 311, 115 (2003). https://doi.org/10.1016/S0375-9601(03)00502-4

    ADS  MathSciNet  Article  Google Scholar 

  63. 63.

    C.-S. Jia, Y.-F. Diao, M. Li, Q.-B. Yang, L.-T. Sun, R.-Y. Huang, J. Phys. A Math. Gen. 37, 11275 (2004). https://doi.org/10.1088/0305-4470/37/46/012

    ADS  Article  Google Scholar 

  64. 64.

    H. Fakhri, J. Sadeghi, Mod. Phys. Lett. A 19, 615 (2004). https://doi.org/10.1142/S0217732304013313

    ADS  Article  Google Scholar 

  65. 65.

    C. Berkdemir, A. Berkdemir, R. Sever, Phys. Rev. C 72, 027001 (2005). https://doi.org/10.1103/PhysRevC.72.027001

    ADS  Article  Google Scholar 

  66. 66.

    D. Schiöberg, Mol. Phys. 59, 1123 (1986). https://doi.org/10.1080/00268978600102631

    ADS  Article  Google Scholar 

  67. 67.

    C.L. Pekeris, Phys. Rev. 45, 98 (1934). https://doi.org/10.1103/PhysRev.45.98

    ADS  Article  Google Scholar 

  68. 68.

    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (Dover Publications, Inc., New York, 1965), https://www.bibsonomy.org/bibtex/2bfc117729f3b97b4f2c1c9227e60ed1a/drmatusek

  69. 69.

    J. Lu, Phys. Scr. 72, 349 (2005). https://doi.org/10.1238/physica.regular.072a00349

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. H. Badalov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadov, H.I., Dadashov, E.A., Huseynova, N.S. et al. Generalized tanh-shaped hyperbolic potential: bound state solution of Schrödinger equation. Eur. Phys. J. Plus 136, 244 (2021). https://doi.org/10.1140/epjp/s13360-021-01202-8

Download citation