Mixed convection in a chamber saturated with MWCNT-Fe3O4/water hybrid nanofluid under the upper wall velocity modulation

Abstract

Mixed convective energy transport of a hybrid nanosuspension (MWCNT-Fe3O4/H2O) within a heated/cooled lid-driven chamber with an oscillation velocity of the moving lid was computationally scrutinized. Non-dimensional control equations written employing the conservation laws and non-primitive variables were solved by the finite difference technique. The developed programming code was verified using the mesh sensitivity analysis and computational results of other researchers. The influence of the Reynolds number, nanoadditives volume fraction and velocity oscillation parameter on flow structures, temperature patterns, mean Nusselt number and nanosuspension flow strength was analyzed. More essential energy transference augmentation with solid particles concentration was found for high Reynolds numbers (forced convection mode), while for low and moderate Reynolds numbers such an enhancement was weak.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

c :

Specific heat, J kg1 K1

f :

Dimensionless upper wall velocity modulation parameter, –

g :

Gravitational acceleration, m s2

Gr:

Grashof number, –

k :

Thermal conductivity, W m1 K1

L :

Length and height of the cavity, m

Nu:

Local Nusselt number, –

\(\overline{{{\text{Nu}}}}\) :

Average Nusselt number, –

\(\overline{p}\) :

Dimensional pressure, Pa

Pr:

Prandtl number, –

Ra:

Rayleigh number, –

Re:

Reynolds number, –

T :

Dimensional temperature, K

t :

Dimensional time, s

T c :

Cold wall temperature, K

T h :

Hot wall temperature, K

u, v :

Dimensionless velocity components, –

u w :

Dimensional velocity of the upper wall, m s1

\(\overline{u}, \, \overline{v}\) :

Dimensional velocity components, m s1

V 0 :

Dimensional reference velocity, m s1

x, y :

Dimensionless Cartesian coordinates, –

\(\overline{x},\overline{y}\) :

Dimensional Cartesian coordinates, m

β :

Thermal expansion coefficient, K1

θ :

Dimensionless temperature, –

μ :

Dynamic viscosity, Pa s

ξ :

Dimensional upper wall velocity oscillation frequency, s1

ρ :

Density, kg m3

ρc :

Heat capacitance, J m3 K1

ρβ :

Buoyancy coefficient, kg m3 K1

τ :

Dimensionless time, –

ϕ :

Nanoparticles volume fraction, –

ψ :

Dimensionless stream function, –

\(\overline{\psi }\) :

Dimensional stream function, m2 s1

ω :

Dimensionless vorticity, –

\(\overline{\omega }\) :

Dimensional vorticity, s1

c:

Cold

f:

Fluid

h:

Hot

hnf:

Hybrid nanofluid

max:

Maximum value

w:

Wall

References

  1. 1.

    A. Bejan, Convection Heat Transfer, 4th edn. (Wiley, New Jersey, 2013).

    Google Scholar 

  2. 2.

    I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media (Pergamon, Amsterdam, 2001).

    Google Scholar 

  3. 3.

    A. Shenoy, M. Sheremet, I. Pop, Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media and Nanofluids (CRC Press, Boca Raton, 2016).

    Google Scholar 

  4. 4.

    R. Iwatsu, J.M. Hyun, K. Kuwahara, Convection in a differentially-heated square cavity with a torsionally-oscillating lid. Int. J. Heat Mass Transf. 35(5), 1069–1076 (1992)

    ADS  Article  Google Scholar 

  5. 5.

    D.Z. Noor, P.R. Kanna, M.J. Chern, Flow and heat transfer in a driven square cavity with double-sided oscillating lids in anti-phase. Int. J. Heat Mass Transf. 52, 3009–3023 (2009)

    Article  Google Scholar 

  6. 6.

    S.S. Mendu, P.K. Das, Fluid flow in a cavity driven by an oscillating lid: a simulation by lattice Boltzmann method. Eur. J. Mech. B/Fluids 39, 59–70 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    J.V. Indukuri, R. Maniyeri, Numerical simulation of oscillating lid driven square cavity. Alexandria Eng. J. 57, 2609–2625 (2018)

    Article  Google Scholar 

  8. 8.

    P. Wang, W. Su, L. Zhu, Y. Zhang, Heat and mass transfer of oscillatory lid-driven cavity flow in the continuum, transition and free molecular flow regimes. Int. J. Heat Mass Transf. 131, 291–300 (2019)

    Article  Google Scholar 

  9. 9.

    J. Zhu, L.E. Holmedal, H. Wang, D. Myrhaug, Vortex dynamics and flow patterns in a two-dimensional oscillatory lid-driven rectangular cavity. Eur. J. Mech./ B Fluids 79, 255–269 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    H. Lamarti, M. Mahdaoui, R. Bennacer, A. Chahboun, Numerical simulation of mixed convection heat transfer of fluid in a cavity driven by an oscillating lid using lattice Boltzmann method. Int. J. Heat Mass Transf. 137, 615–629 (2019)

    Article  Google Scholar 

  11. 11.

    S. Izadi, T. Armaghani, R. Ghasemiasl, A.J. Chamkha, M. Molana, A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 343, 880–907 (2019)

    Article  Google Scholar 

  12. 12.

    G. Huminic, A. Huminic, Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review. J. Mol. Liq. 302, 112533 (2020)

    Article  Google Scholar 

  13. 13.

    O. Mahian, L. Kolsi, M. Amani, P. Estelle, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, M. Siavashi, R.A. Taylor, H. Niazmand, S. Wongwises, T. Hayat, A. Kolanjiyil, A. Kasaeian, I. Pop, Recent advances in modeling and simulation of nanofluid flows—Part I: fundamentals and theory. Phys. Rep. 790, 1–48 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    O. Mahian, L. Kolsi, M. Amani, P. Estelle, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, R.A. Taylor, E. Abu-Nada, S. Rashidi, H. Niazmand, S. Wongwises, T. Hayat, A. Kasaeian, I. Pop, Recent advances in modeling and simulation of nanofluid flows—Part II: applications. Phys. Rep. 791, 1–59 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    F. Selimefendigil, H.F. Oztop, Mixed convection of nanofluid filled cavity with oscillating lid under the influence of an inclined magnetic field. J. Taiwan Inst. Chem. Eng. 63, 202–215 (2016)

    Article  Google Scholar 

  16. 16.

    A.I. Alsabery, M.A. Sheremet, A.J. Chamkha, I. Hashim, Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int. J. Mech. Sci. 150, 637–655 (2019)

    Article  Google Scholar 

  17. 17.

    F. Selimefendigil, H.F. Oztop, A.J. Chamkha, Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder. Int. Commun. Heat Mass Transf. 87, 40–51 (2017)

    Article  Google Scholar 

  18. 18.

    F. Garoosi, M.M. Rashidi, Conjugate-mixed convection heat transfer in a two-sided lid-driven cavity filled with nanofluid using Manninen’s two phase model. Int. J. Mech. Sci. 131–132, 1026–1048 (2017)

    Article  Google Scholar 

  19. 19.

    M.A. Mansour, R.A. Mohamed, M.M. Abd-Elaziz, S.E. Ahmed, Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid. Int. Commun. Heat Mass Transf. 37, 1504–1512 (2010)

    Article  Google Scholar 

  20. 20.

    G.H.R. Kefayati, FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int. J. Therm. Sci. 95, 29–46 (2015)

    Article  Google Scholar 

  21. 21.

    G.H.R. Kefayati, FDLBM simulation of magnetic field effect on mixed convection in a two sided lid-driven cavity filled with non-Newtonian nanofluid. Powder Technol. 280, 135–153 (2015)

    Article  Google Scholar 

  22. 22.

    H. Sajjadi, A.A. Delouei, M. Izadi, R. Mohebbi, Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid. Int. J. Heat Mass Transf. 132, 1087–1104 (2019)

    Article  Google Scholar 

  23. 23.

    L.S. Sundar, M.K. Singh, A.C.M. Sousa, Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf. 52, 73–83 (2014)

    Article  Google Scholar 

  24. 24.

    N.S. Gibanov, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int. J. Heat Mass Transf. 114, 1086–1097 (2017)

    Article  Google Scholar 

  25. 25.

    M.S. Astanina, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Mixed convection of Al2O3-water nanofluid in a lid-driven cavity having two porous layers. Int. J. Heat Mass Transf. 118, 527–537 (2018)

    Article  Google Scholar 

  26. 26.

    M.A. Sheremet, I. Pop, Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno’s mathematical model. Appl. Math. Comput. 266, 792–808 (2015)

    MathSciNet  Article  Google Scholar 

  27. 27.

    K.M. Khanafer, A.M. Al-Amiri, I. Pop, Numerical simulation of unsteady mixed convection in a driven cavity, using an externally excited sliding lid. Eur. J. Mech. B/Fluids 26, 669–687 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    M.A. Waheed, Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate. Int. J. Heat Mass Transf. 52, 5055–5063 (2009)

    Article  Google Scholar 

  29. 29.

    E. Abu-Nada, A.J. Chamkha, Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur. J. Mech. B/Fluid 29, 472–482 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work of M.A. Sheremet was supported by the Russian Science Foundation (Project No. 17–79–20141). Authors also wish to express their thanks to the very competent reviewers for the valuable comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Sheremet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheremet, M.A., Pop, I. Mixed convection in a chamber saturated with MWCNT-Fe3O4/water hybrid nanofluid under the upper wall velocity modulation. Eur. Phys. J. Plus 136, 210 (2021). https://doi.org/10.1140/epjp/s13360-021-01189-2

Download citation