Unravelling the potential of phase portrait in the auscultation of mitral valve dysfunction

Abstract

The manuscript elucidates the potential of phase portrait, fast Fourier transform, wavelet, and time-series analyses of the heart murmur (HM) of normal (healthy) and mitral regurgitation (MR) in the diagnosis of valve-related cardiovascular diseases. The temporal evolution study of phase portrait and the entropy analyses of HM unveil the valve dysfunction-induced haemodynamics. A tenfold increase in sample entropy in MR from that of normal indicates the valve dysfunction. The occurrence of a large number of frequency components between lub and dub in MR, compared to the normal, is substantiated through the spectral analyses. The machine learning techniques, K-nearest neighbour, support vector machine, and principal component analyses give 100% predictive accuracy. Thus, the study suggests a surrogate method of auscultation of HM that can be employed cost-effectively in rural health centres.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

Not applicable.

References

  1. 1.

    Cardiovascular Diseases W H O (2017). https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 18 March 2020

  2. 2.

    F. of I. R. Societies, The Global Impact of Respiratory Disease, 2nd ed. (Sheffield, European Respiratory Society, European Respiratory Society, 2017)

  3. 3.

    D. Prabhakaran, P. Jeemon, M. Sharma, G.A. Roth, C. Johnson, S. Harikrishnan, R. Gupta, J.D. Pandian, N. Naik, A. Roy, R.S. Dhaliwal, D. Xavier, R.K. Kumar, N. Tandon, P. Mathur, D.K. Shukla, R. Mehrotra, K. Venugopal, G.A. Kumar, C.M. Varghese, M. Furtado, P. Muraleedharan, R.S. Abdulkader, T. Alam, R.M. Anjana, M. Arora, A. Bhansali, D. Bhardwaj, E. Bhatia, J.K. Chakma, P. Chaturvedi, E. Dutta, S. Glenn, P.C. Gupta, S.C. Johnson, T. Kaur, S. Kinra, A. Krishnan, M. Kutz, M.R. Mathur, V. Mohan, S. Mukhopadhyay, M. Nguyen, C.M. Odell, A.M. Oommen, S. Pati, M. Pletcher, K. Prasad, P.V. Rao, C. Shekhar, D.N. Sinha, P.N. Sylaja, J.S. Thakur, K.R. Thankappan, N. Thomas, S. Yadgir, C.S. Yajnik, G. Zachariah, B. Zipkin, S.S. Lim, M. Naghavi, R. Dandona, T. Vos, C.J.L. Murray, K.S. Reddy, S. Swaminathan, L. Dandona, Lancet Glob. Heal. 6, e1339 (2018)

    Article  Google Scholar 

  4. 4.

    J. Stewart, G. Manmathan, P. Wilkinson, JRSM Cardiovasc. Dis. 6, 204800401668721 (2017)

    Article  Google Scholar 

  5. 5.

    K. Maganti, V.H. Rigolin, M.E. Sarano, R.O. Bonow, Mayo Clin. Proc. 85, 483 (2010)

    Article  Google Scholar 

  6. 6.

    D.A. Bluemke, S. Achenbach, M. Budoff, T.C. Gerber, B. Gersh, L.D. Hillis, W.G. Hundley, W.J. Manning, B.F. Printz, M. Stuber, Circulation 118, 586 (2008)

    Article  Google Scholar 

  7. 7.

    I.R. Hanna, M.E. Silverman, Am. J. Cardiol. 90, 259 (2002)

    Article  Google Scholar 

  8. 8.

    F. Nogata, Y. Yokota, Y. Kawanura, H. Morita, Y. Uno, W.R. Walsh, Trans. Biomed. Eng. Image Recogn. 3, 42 (2012)

    Google Scholar 

  9. 9.

    A. Mondal, A. K. Kumar, P. S. Bhattacharya, G. Saha, in 2013 Indian Conf. Med. Informatics Telemed. (IEEE, 2013), pp. 43–47

  10. 10.

    S.M. Debbal, F. Bereksi-Reguig, Appl. Math. Comput. 184, 1041 (2007)

    MathSciNet  Google Scholar 

  11. 11.

    S.M. Shekatkar, Y. Kotriwar, K.P. Harikrishnan, G. Ambika, Sci. Rep. 7, 15127 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    I. Awan, W. Aziz, I.H. Shah, N. Habib, J.S. Alowibdi, S. Saeed, M.S.A. Nadeem, S.A.A. Shah, PLoS ONE 13, e0196823 (2018)

    Article  Google Scholar 

  13. 13.

    S. Manjusha, S.B. Preethi, M.S. Swapna, S. Sankararaman, Int. J. Curr. Res. Rev 9, 41 (2017)

    Google Scholar 

  14. 14.

    E. Conte, A. Federici, J.P. Zbilut, Chaos Solitons Fractals 41, 1416 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    M.S. Swapna, S.S. Shinker, S. Suresh, S. Sankararaman, Biomed. Mater. Eng. 29, 787 (2018)

    Google Scholar 

  16. 16.

    S.A. Taplidou, L.J. Hadjileontiadis, in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2006), pp. 4502–4505

  17. 17.

    R. Hegger, H. Kantz, T. Schreiber, Chaos Interdiscip. J. Nonlinear Sci. 9, 413 (1999)

    Article  Google Scholar 

  18. 18.

    M. Azarnoosh, A. Motie Nasrabadi, M. R. Mohammadi, and M. Firoozabadi, Chaos Solitons Fractals 44, 1054 (2011)

  19. 19.

    K.S. Kumar, C.V.A. Kumar, B. George, G. Renuka, C. Venugopal, J. Geophys. Res. Sp. Phys. 109, 1 (2004)

    Google Scholar 

  20. 20.

    J.S. Richman, J.R. Moorman, Am. J. Physiol. Circ. Physiol. 278, H2039 (2000)

    Article  Google Scholar 

  21. 21.

    C.-H. Chen, W.-T. Huang, T.-H. Tan, C.-C. Chang, Y.-J. Chang, Sensors 15, 13132 (2015)

    Article  Google Scholar 

  22. 22.

    I.T. Jolliffe, J. Cadima, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150202 (2016)

  23. 23.

    W. Astuti, Adiwijaya, J. Phys. Conf. Ser. 971, 012003 (2018)

  24. 24.

    I. Maglogiannis, E. Loukis, E. Zafiropoulos, A. Stasis, Comput. Methods Programs Biomed. 95, 47 (2009)

    Article  Google Scholar 

  25. 25.

    R. Palaniappan, K. Sundaraj, S. Sundaraj, BMC Bioinform. 15, 223 (2014)

    Article  Google Scholar 

  26. 26.

    J.M. Johnson, A. Yadav, in Information and Communications Technologies for. Sustainable Development (Springer, 2018), pp. 245–253

  27. 27.

    A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, Circulation 101, e215 (2000)

    Google Scholar 

  28. 28.

    G.D. Clifford, C. Liu, B. Moody, D. Springer, I. Silva, Q. Li, and R.G. Mark, in 2016 Computers in Cardiology Conference (IEEE, 2016), pp. 609–612

  29. 29.

    M. Akay, Time Frequency AndWavelets in Biomedical Signal Processing (IEEE Press Series in Biomedical Engineering, 1998)

  30. 30.

    M. Nabi, A. Wahid, P. Kumar, Int. J. Adv. Res. Comput. Sci. 8, 456 (2017)

    Google Scholar 

  31. 31.

    C. Savas, F. Dovis, Sensors 19, 5219 (2019)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Sreejyothi, S., Renjini, A. et al. Unravelling the potential of phase portrait in the auscultation of mitral valve dysfunction. Eur. Phys. J. Plus 136, 184 (2021). https://doi.org/10.1140/epjp/s13360-021-01185-6

Download citation