Skip to main content
Log in

Study of thermodynamic fluctuations of two-dimensional multiferroic systems using the renormalized Gaussian approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigate the influence of the thermodynamic fluctuations of order parameters and their coupling on the physical quantities of a 2D-multiferroic system using the renormalized Gaussian approach. Correction to magnetization, polarization, inverse susceptibilities, correlation lengths, specific heat, and critical temperatures are found taking into account order parameters thermodynamic fluctuations and their coupling. The specific heat exhibits two λ-type anomalies; this highlights second-order phase transitions in the system. The results obtained from this approach are in good accordance with the experimental ones found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Imry, D.J. Scalapino, Phase transitions in systems with coupled order parameters. Phys. Rev. B 10, 2900 (1974). https://doi.org/10.1103/PhysRevB.10.290

    Article  ADS  Google Scholar 

  2. G.V. Bezrukov, A.N. Men, V.M. Talanov, Theory of isotructural phase transistions described by two order parameters. Phys. Stat. sol. (a) 116(603), 603–613 (1989)

    Article  ADS  Google Scholar 

  3. A. Planes, T. Castán, A. Saxena, Thermodynamics of multicaloric effects of multiferroic materials: application to metamagnetic shape-memory alloys and ferrotoroidics. Philos. Trans. R. Soc. A 374, 20150304 (2016). https://doi.org/10.1098/rsta.2015.0304

    Article  ADS  Google Scholar 

  4. C.M. Chang, B.K. Mani, S. Lisenkov, I. Ponomareva, Thermally mediated mechanism to enhance magnetoelectric coupling in multiferroics. Phys. Rev. Lett. 114, 177205 (2015). https://doi.org/10.1103/PhysRevLett.114.177205

    Article  ADS  Google Scholar 

  5. A. Dixit, G. Lawes, A.B. Harris, Magnetic structure and magnetoelectric coupling in bulk and thin film FeVO4. Phys. Rev. B 82, 024430 (2010). https://doi.org/10.1103/PhysRevB.82.024430

    Article  ADS  Google Scholar 

  6. A.A. Belik, E. Takayama-Muramachi, Magnetic properties of BiMnO3 studies with DC and AC magnetization and specific heat. Inorg. Chem. 45, 10224–10229 (2006)

    Article  Google Scholar 

  7. G.R. Boyd, P. Kumar, S.R. Phillpot, Multiferroic thermodynamic. arXiv:1101.5403v1 [cond-Mat. Mtrl-sci]

  8. A.B. Harris, Landau analysis of the symmetry of the magnetic structure and magnetoelectric interaction in multiferroics. Phys. Rev. B 76, 054447 (2007). https://doi.org/10.1103/PhysRevB.76.054447

    Article  ADS  Google Scholar 

  9. G. Howczack, J. Spalek, Ferroelectric-ferromagnetic correlations in BiMnO3 perovskite within Landau theory: comparison with experiment. Eur Phys. J. B 78, 417–428 (2010). https://doi.org/10.1140/EPJB/E2010-10583-0

    Article  ADS  Google Scholar 

  10. J.K. Harada, L. Balhorn, J. Hazi, M.C. Kemei, R. Seshadri, Magnetodielectric coupling in the ilmenites MTiO3 (M = Co, Ni). Phys. Rev. B 93, 104404 (2016). https://doi.org/10.1103/PhysRevB.93.104404

    Article  ADS  Google Scholar 

  11. L. Seixas, A.S. Rodin, A. Carvalho, A.H. Castro Neto, Multiferroic two-dimensional materials. Phys. Rev. Lett. 116, 206803 (2016). https://doi.org/10.1103/PhysRevLett.116.206803

    Article  ADS  Google Scholar 

  12. M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95, 087206 (2005). https://doi.org/10.1103/PhysRevLett.95.087206

    Article  ADS  Google Scholar 

  13. G.E. Tongue Magne, R.M. Keumo Tsiaze, A.J. Fotué, L.C. Fai, Theoretical study of two biquadratically order parameters: application to two-dimensional mulferroics. J. JMMM 504, 166661 (2020). https://doi.org/10.1016/j.jmmm.2020.166661

    Article  Google Scholar 

  14. K.F. Wang, J.-M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and orders. Adv. Phys. 58(4), 321–448 (2009). https://doi.org/10.1080/00018730902920554

    Article  ADS  Google Scholar 

  15. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Matter 23, 1062–1087 (2011)

    Article  Google Scholar 

  16. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, Epiaxial BiFeO3 multiferroic thin film heterostructes. Science (2003). https://doi.org/10.1126/science.1080615

    Article  Google Scholar 

  17. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Amira, Y. Tokura, Magnetic control of ferroelectric polarization. Nature (2003). https://doi.org/10.1038/nature02018

    Article  Google Scholar 

  18. R.M. Keumo Tsiaze, S.E. Mkam Tchouobiap, J.E. Danga, S. Domngang, M.N. Hounkonnou, Renormalized Gaussian approach to critical fluctuations in the Landau–Ginzburg–Wilson model and finite-size scaling. J Phys. A Math. Theor. 44, 285002 (2011). https://doi.org/10.1088/1751-8113/44/28/285002

    Article  MATH  Google Scholar 

  19. R.M. Keumo Tsiaze, A.V. Wirngo, S.E. Nkam Tchouobiap, E. Baloîtcha, M.N. Hounkonnou, Renormalized Gaussian, approach to finite size effects and exchange interactions: application to localized ferromagnets and amorphous magnets. JMMM 465, 611–620 (2018). https://doi.org/10.1016/J.Jmmm.2018.06.001

    Article  ADS  Google Scholar 

  20. A.M. Alrub, Study of switching phenomenon of weak magnetoelectric coupling in proper multiferroics using Landau theory. J. Appl. Phys. 126, 154102 (2019). https://doi.org/10.1063/1.5110921

    Article  ADS  Google Scholar 

  21. Y. Liu, L.-J. Zhai, H.-Y. Wang, Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials. Chin. Phys. B 24, 037510 (2015). https://doi.org/10.1088/1674-1056/24/3/037510

    Article  ADS  Google Scholar 

  22. J.-P. Zhou, Y.-X. Zhang, Q. Liu, P. Liu, Magnetoelectric effects on ferromagnetic and ferroelectric phase transitions in multiferroic materials. Acta Mater. 76, 355–370 (2014). https://doi.org/10.1016/j.actamat.2014.05.038

    Article  ADS  Google Scholar 

  23. M.A. Subramanian, T. He, J. Chen, N.S. Rogado, T.G. Calvarese, A.W. Sleight, Giant room—temperature magnetodielectric response in the electronic ferroelectric LuFe2O4. Adv. Mater. 18, 1737–1739 (2006). https://doi.org/10.1002/adma.200600071

    Article  Google Scholar 

  24. H. Mo, C.S. Nelson, L.N. Bezmaternykh, V.T. Temerov, Magnetic structure of the field-induced multiferroicGdFe3(BO3)4. Phys. Rev. B (2008). https://doi.org/10.1103/physrevb.78.214407

    Article  Google Scholar 

  25. G. Venkataiah, Y. Shirahata, M. Itoh, T. Taniyama, Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field. Appl. Phys. Lett. 99, 102506 (2011). https://doi.org/10.1063/1.3628464

    Article  ADS  Google Scholar 

  26. W. Eerenstein, M. Wiora, J.L. Prieto, J.F. Scott, N.D. Mathur, Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348–351 (2007). https://doi.org/10.1038/nmat1886

    Article  ADS  Google Scholar 

  27. Y. Imry, On the statistical mechanics of coupled order parameters. J. Phys. C Sol. State Phys. 8, 567 (1975). https://doi.org/10.1088/0022-3719/8/5/005

    Article  ADS  Google Scholar 

  28. A. Dixit, G. Lawes, Development of electrical polarization at an antiferromagnetic transition in FeVO4. J. Phys. Condens. Matter 21, 456003 (2009). https://doi.org/10.1088/0953-8984/21/45/456003

    Article  ADS  Google Scholar 

  29. N. Pavan Kumar, E. Sagar, P.D. Babu, A. Srinivas, M. Manivel Raja, Investigation of tow temperature magnetization, specific heat and magnetocaloric effect in Ho doped TnMnO3 multiferroic system. J. Sol. Stat. Sci. 94, 54–63 (2019). https://doi.org/10.1016/J.Solidstatsciences.2015.05.06

    Article  ADS  Google Scholar 

  30. A. Kumarasiri, E. Abdelhamid, A. Dixit, G. Lawes, Effect of transition metal doping on multiferroic ordering in FeVO4. Phys. Rev. B 91, 014420 (2015). https://doi.org/10.1103/PhysRevB.91.014420

    Article  ADS  Google Scholar 

  31. D.O. Flynn, M.R. Less, G. Balakrishnan, Magnetis susceptibility and heat capacity measurements of single crystal TbMnO3. J. Phys. Condens. Matter 26, 25600 (2014). https://doi.org/10.1088/0953-8984/25/25/256002

    Article  Google Scholar 

  32. J.G. Cheng, Y. Sui, X.L. Liu, J.P. Miao, X.Q. Huang, Specific heat of single-crystal PrMnO3. J. Phys. Condens. Matter 17, 5869–5879 (2005). https://doi.org/10.1088/0953-8084/17/37/022

    Article  ADS  Google Scholar 

  33. N. Pavan Kumar, G. Lalitha, P. Venugopal Reddy, Specific heat and magnetization studies of RMnO3 (R = Sm, Eu, Gd, Tb, Dy) multiferroics. Phys. Scr. 83, 045701 (2011). https://doi.org/10.1088/0031-8949/83/04/045701

    Article  ADS  Google Scholar 

  34. N. Zhang, S. Dong, Z. Fu, Z. Yan, F. Chang, J. Liu, Phase transition and separation in multiferroic orthorhombic Dy1−xHoxMnO3 (0 ≤ x ≤1). Sci. Rep. 4, 6506 (2014). https://doi.org/10.1038/srep06506

    Article  ADS  Google Scholar 

  35. S.N. Kallev, R.G. Mitarov, Z.M. Omarov, G.G. Gadzhiev, L.A. Reznichenka, Heat capacity of BiFeO-based multiferroics. J. Exp. Phys. 118(2), 279–283 (2014). https://doi.org/10.1134/51063776114020099

    Article  ADS  Google Scholar 

  36. M. Ackermann, D. Brüning, T. Lorenz, P. Becker, Thermodynamic properties of the new multiferroic material (NH4)2[FeCl5(H2O)]. New J. Phys. 15, 123001 (2013). https://doi.org/10.1088/13672630/15/12/12300

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongue, M.G.E., Fotue, A.J., Tsiaze, R.M.K. et al. Study of thermodynamic fluctuations of two-dimensional multiferroic systems using the renormalized Gaussian approach. Eur. Phys. J. Plus 136, 199 (2021). https://doi.org/10.1140/epjp/s13360-021-01178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01178-5

Navigation