Effect of sintering conditions and doping type on the functional properties of ZnO semiconductors


Electrical properties and microstructure of ZnO ceramic bodies doped with a constant ratio of different dopants were studied under several of sintering conditions. The selected general chemical formula was (99Zn–M) where M=CuO, V2O5, MnO2 and GeO2. The different compositions were processed by the conventional solid state reaction and fired at various temperatures between 1000 and 1300 °C for 1–3 h. The degree of sintering of the ZnO bodies was identified from the determination of the physical properties. The obtained results showed that, the optimum sintering conditions of ZnO varistors are either 1200 °C/3 h or 1300 °C/2 h. Both the electric modulus and dielectric loss tangent were studied as a function of frequency. The addition of CuO gave the maximum breakdown voltage, highest dielectric constant and the best electrical conductivity in the studied compositions. Also, the addition of V2O5 gave the minimum dielectric loss, and therefore, the two samples could be used in different useful technological applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    D.C. Look, Recent advances in ZnO materials and devices. Mate. Sci. Engin. B. 80, 383–387 (2001)

    Article  Google Scholar 

  2. 2.

    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Prog. Mate. Sci. 50(3), 293–340 (2005)

    Article  Google Scholar 

  3. 3.

    V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. App. Phy. 83(10), 5447–5451 (1998)

    ADS  Article  Google Scholar 

  4. 4.

    H. Ramelan, S. Wahyuningsih, H. Munawaroh, R. Narayan, ZnO wide bandgap semiconductors preparation for optoelectronic devices. IOP Conf. Ser. Mater. Sci. Eng. 176, 012008 (2017)

    Article  Google Scholar 

  5. 5.

    M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, ZnO transparent thin films for gas sensor applications. Thin Solid Films 515(2), 551–554 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    A. Lagrange, Present and Future of Zinc Oxide Visitors, in Electronic Ceramics. ed. by B. Steele (Elsevier Applied Science, London, 1991)

    Google Scholar 

  7. 7.

    J.G.M. Furtado, L.A. Saléh, E.T. Serra, G.S.G. Oliveira, M.C.S. Nóbrega, Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics. Mater. Res. 8(4), 425–429 (2005)

    Article  Google Scholar 

  8. 8.

    L. Levinson, H.R. Philipp, Zinc oxide varistors: a eeview. Am. Ceramic Soc. Bull. 65(4), 639–646 (1986)

    Google Scholar 

  9. 9.

    J. Ott, A. Lorenz, M. Harrer, E.A. Preissner, The Influence of Bi2O3 and Sb2O3 on the electrical properties of ZnO-based varistors. J. Electroceram. 6(2), 135–146 (2001)

    Article  Google Scholar 

  10. 10.

    K.E. Rady, O.A. Desouky, Study of the effect of substitution by MnO2 and V2O5 on the microstructure, electrical and dielectric characteristics of zinc ceramics. Eur. Phys. J. Plus. 131, 444 (2016)

    Article  Google Scholar 

  11. 11.

    C. Nahm, The electrical properties and d.c. degradation characteristics of Dy2O3 doped Pr6O11-based ZnO varistors. J. Eur. Ceramic Soc. 21, 545–553 (2001)

    Article  Google Scholar 

  12. 12.

    M.T. Noman, M. Petru, J. Militký, M. Azeem, M.A. Ashra, One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials. 13(1), 14 (2020)

    ADS  Article  Google Scholar 

  13. 13.

    M.T. Noman, M. Petrů, Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 10(9), 1661 (2020)

    Article  Google Scholar 

  14. 14.

    M.T. Noman, M. Petru, N. Amor, P. Louda, Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 10(1), 21080 (2020)

    ADS  Article  Google Scholar 

  15. 15.

    ASTM C20, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity and Bulk Modulus of Burned Refractory Brick and Shapes (ASTM International, West Conshohocken. (2010)

  16. 16.

    ASTM C356-10, Standard Test Method for Linear Shrinkage of Preformed High-Temperature Thermal Insulation Subjected to Soaking Heat (ASTM International, West Conshohocken. (2010)

  17. 17.

    S. Muhamad Syaizwadi, S. Siti Noradilah, M.G. Mohd Sabri, W.A. Wan Rafizah, K. Syara, O.J. Lee, Effect of sinteringtemperature on zinc oxide varistor Ceramics. IOP Conf. Ser. Mater. Sci. Eng. 440, 012037 (2018)

    Article  Google Scholar 

  18. 18.

    I. Wei Chen, X.-H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168–171 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    W.D. Kigery, H.K. Bowen, D.R. Uhlmann, Introduction of Ceramics (Wiley, New York, 1975).

    Google Scholar 

  20. 20.

    K.E. Rady, R.A. Elsad, Improvement the physical properties of nanocrystalline Ni–Zn ferrite using the substitution by (Mg–Ti) ions. J. Magn. Mag. Mater. 498, 166195 (2020)

    Article  Google Scholar 

  21. 21.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  22. 22.

    O.A. Desouky, K.E. Rady, Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2. Chin. Phys. B. 25, 068402 (2016)

    Article  Google Scholar 

  23. 23.

    S. E-Rabaie, A.H. Khafagy, M.T. Dawoud, M.T. Attia, Mechanical, microstructure and electrical properties of ternary ZnO–V2O5–Mn3O4 varistor with sintering temperature. Bull. Mater. Sci. 38, 773–781 (2015)

    Article  Google Scholar 

  24. 24.

    F. Muktepavela, J. Maniks, L. Grigorjeva, R. Zabels, P. Rodnyi, E. Gorokhova, Effect of in doping on the ZnO powers morphology and microstructure evolution of ZnO: in ceramics as a material for scintillators. Latvian. J. Phys. Tech. Sci. 6, 35–42 (2018)

    Article  Google Scholar 

  25. 25.

    M. Alim, S. Li, F. Liu, P. Cheng, Electrical barriers in the ZnO varistor grain boundaries, phys. Stat. Sol. A. 203(2), 410–427 (2006)

    Article  Google Scholar 

  26. 26.

    C.H. Rayssi, SEl. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, Dielectric, modulus and impedance analysis of lead-free ceramics Ba0.8La0.133Ti1−xSnxO3 (x = 0.15 and 0.2). Appl. Phys. A. 108, 593–600 (2012)

    ADS  Article  Google Scholar 

  28. 28.

    K. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. (Lipezig) 40, 817 (1913)

    ADS  Article  Google Scholar 

  29. 29.

    C.G. Koop, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121 (1951)

    ADS  Article  Google Scholar 

  30. 30.

    S. Roy, D. Das, T.K. Roy, Nonlinear electrical properties of ZnO–V2O5 based rare earth (Er2O3) added varistors. J. Electron. Mater. 48, 5650 (2019)

    ADS  Article  Google Scholar 

  31. 31.

    S.E. Mansour, O.A. Desouky, E.M. Negim, G. Irmukhametova, R.A. Mangazbayeva, Microstructure and current-voltage characteristics of vanadium-doped zinc oxide-based varistors. World J. Appl. Sci. 26(11), 1428–1433 (2013)

    Google Scholar 

  32. 32.

    M.A. Ahmed, K.E. Rady, M.S. Shams, Enhancement of electric and magnetic properties of Mn–Zn ferrite by Ni–Ti ions substitution. J. Alloys Comp. 622, 269 (2015)

    Article  Google Scholar 

  33. 33.

    A. Aljaafari, A. Sedky, Influence of fine crystal percentage on the electrical properties of ZnO ceramic-Based varistors. Crystals. 10, 681 (2020)

    Article  Google Scholar 

  34. 34.

    B. Van Zeghbroeck, Principles of Semiconductor Devices (University of Colorado, Colorado, 2007).

    Google Scholar 

  35. 35.

    K.A. Almasri, H.A.A. Sidek, M.H. Zaid, Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses. Results Phys. 7, 2242 (2017)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to K. E. Rady.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rady, K.E., Desouky, O.A. Effect of sintering conditions and doping type on the functional properties of ZnO semiconductors. Eur. Phys. J. Plus 136, 188 (2021). https://doi.org/10.1140/epjp/s13360-021-01172-x

Download citation