Rapid detection of antibiotic sensitivity of Staphylococcus aureus by Raman tweezers

Abstract

Methicillin-resistant Staphylococcus aureus is a bacterium pathogenic to humans and a leading cause of the hospital-acquired infections, causing significant increase in morbidity and mortality. Conventional antibiotic sensitivity testing requires culturing of the isolated pathogen in the presence of antibiotics, and it takes at least 48 hours. Comparatively faster determination of bacterial sensitivity to antibiotics can be achieved with Raman tweezers—an analytical method based on Raman spectroscopy and optical trapping. This article demonstrates the effectiveness of this approach for the discrimination between a methicillin-resistant and a methicillin-sensitive strain of Staphylococcus aureus in about 4 hours from a microliter volume of the bacterial sample. We found that the antibiotic-induced changes in the bacterial cells influenced the ratio of the Raman signals of nucleic acids to phenylalanine. This points to the antibiotic causing cell lysis and the associated loss of nucleic acids from the cytoplasm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    S. van den Berg, K. P. M. Bonarius, H. P. J.and van Kessel, G. S. Elsinga, N. Kooi, H. Westra, T. Bosma, M.M. van der Kooi-Pol, D. G. A. M. Koedijk, H. Groen, J. M. van Dij, G. Buist, I. A. J. M. Bakker-Woudenberg. Int. J. Med. Microbiol, (2015), 305(11), 55-64

  2. 2.

    A.J. Kallen, Y. Mu, S. Bulens, A. Reingold, S. Petit, K. Gershman, S.M. Ray, L.H. Harrison, R. Lynfield, G. Dumyati, J.M. Townes, W. Schaffner, P.R. Patel, S.K. Fridkin, JAMA 304(6), 641–648 (2010)

    Article  Google Scholar 

  3. 3.

    S.E. Cosgrove, Y.L. Qi, K.S. Kaye, S. Harbarth, A.W. Karchmer, Y. Carmeli, Infect. Control. Hosp. Epidemiol 26(2), 166–174 (2005)

    Article  Google Scholar 

  4. 4.

    D.F.M. Willemse-Erix, M.J. Scholtes-Timmerman, J.-W. Jachtenberg, W.B. van Leeuwen, D. Horst-Kreft, T.C.B. Schut, R.H. Deurenberg, G.J. Puppels, A. van Belkum, M.C. Vos, K. Maquelin, J. Clin. Microbiol. 47(3), 652–659 (2009)

    Article  Google Scholar 

  5. 5.

    J.H. Jorgensen, J. Clin. Microbiol. 31(11), 2841–2844 (1993)

    Article  Google Scholar 

  6. 6.

    J. M. Millir, C. M. OHara, Manual of Clinical Microbiology, chapter Manual and automated systems for microbial, (ASM Press,Washington, D.C. 1999)

  7. 7.

    A. Tannert, R. Grohs, J. Popp, U. Neugebauer, Appl. Microbiol. Biotechnol. 103(2), 549–566 (2019)

    Article  Google Scholar 

  8. 8.

    J. Kirchhoff, U. Glaser, J.A. Bohnert, M.W. Pletz, J. Popp, U. Neugebauer, Anal. Chem. 90(3), 1811–1818 (2018)

    Article  Google Scholar 

  9. 9.

    M.G. Bergeron, M. Ouellette, J. Clin. Microbiol. 36(8), 2169–2172 (1998)

    Article  Google Scholar 

  10. 10.

    M.R. Pulido, M. Garcia-Quintanilla, R. Martin-Pena, J.M. Cisneros, M.J. McConnell, J. Antimicrob. Chemother. 68(12), 2710–2717 (2013)

    Article  Google Scholar 

  11. 11.

    R.D. Snook, T.J. Harvey, E.C. Faria, P. Gardner, Integr. Biol. 1(1), 43–52 (2009)

    Article  Google Scholar 

  12. 12.

    H.E. Dekter, C.C. Orelio, M.C. Morsink, S. Tektas, B. Vis, R. te Witt, W.B. van Leeuwen, Eur. J. Clin. Microbiol. Infect. Dis. 36(1), 81–89 (2017)

    Article  Google Scholar 

  13. 13.

    K. Chen, Y.J. Qin, F. Zheng, M.H. Sun, D.R. Shi, Opt. Lett. 31(13), 2015–2017 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    S. Dochow, Ch. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, J. Popp, Lab. Chip. 11(8), 1484–1490 (2011)

    Article  Google Scholar 

  15. 15.

    A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, Opt. Lett, (1986), 11(5), 288-290

  16. 16.

    T.J. Moritz, C.R. Polage, D.S. Taylor, D.M. Krol, S.M. Lane, J.W. Chan, J. Clin. Microbiol. 48(11), 4287–4290 (2010)

    Article  Google Scholar 

  17. 17.

    Z. Pilát, A. Jonáš, J. Pilátová, T. Klementová, S. Bernatová, M. Šiler, T. Maňka, M. Kizovský, F. Růžička, R. Pantůček, U. Neugebauer, O. Samek, P. Zemánek, Anal. Chem. 92(18), 12304–12311 (2020)

    Article  Google Scholar 

  18. 18.

    U. Munchberg, P. Rosch, M. Bauer, J. Popp, Anal. Bioanal. Chem. 406(13), 3041–3050 (2014)

    Article  Google Scholar 

  19. 19.

    S. Raj, M. Marro, M. Wojdyla, D. Petrov, Biomed. Opt. Express 3(4), 753–763 (2012)

    Article  Google Scholar 

  20. 20.

    K. S. Lee, F. C. Pereira, M. Palatinszky, L. Behrendt, U. Alcolombri, D. Berry, M. Wagner, R. Stocker, Nat. Protoc, (2020), Early Access

  21. 21.

    K. Maquelin, L.P. Choo-Smith, T. van Vreeswijk, H.P. Endtz, B. Smith, R. Bennett, H.A. Bruining, G.J. Puppels, Anal. Chem. 72(1), 12–19 (2000)

    Article  Google Scholar 

  22. 22.

    R. Petry, M. Schmitt, J. Popp, ChemPhysChem 4(1), 14–30 (2003)

    Article  Google Scholar 

  23. 23.

    O. Samek, S. Bernatová, J. Ježek, M. Šiler, M. Šerý, V. Krzyžánek, K. Hrubanová, P. Zemánek, V. Holá, F. Růžička, J. Biomed. Opt. 20(5), 051038 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    J.W. Chan, A.P. Esposito, C.E. Talley, C.W. Hollars, S.M. Lane, T. Huser, Anal. Chem. 76(3), 599–603 (2004)

    Article  Google Scholar 

  25. 25.

    W.L. Lu, X.Q. Chen, L. Wang, H.F. Li, Y.V. Fu, Anal. Chem. 92(9), 6288–6296 (2020)

    Article  Google Scholar 

  26. 26.

    C. Xie, J. Mace, M.A. Dinno, Y.Q. Li, W. Tang, R.J. Newton, P.J. Gemperline, PJ. Anal. Chem. 77(14), 4390–4397 (2005)

    Article  Google Scholar 

  27. 27.

    S. Bernatová, O. Samek, Z. Pilát, M. Šerý, J. Ježek, P. Jákl, M. Šiler, V. Krzyžánek, P. Zemánek, V. Holá, M. Dvořáčková, F. Růžička, Molecules 18(11), 13188–13199 (2013)

    Article  Google Scholar 

  28. 28.

    Z. Pilát, S. Bernatová, J. Ježek, J. Kirchhoff, A. Tannert, U. Neugebauer, O. Samek, P. Zemánek, Sensors 18(5), 1623 (2018)

    Article  Google Scholar 

  29. 29.

    K. Rebrošová, M. Šiler, O. Samek, F. Růžička, S. Bernatová, J. Ježek, P. Zemánek, V. Holá, Future Microbiol. 12(10), 881–890 (2017)

    Article  Google Scholar 

  30. 30.

    I. Notingher, L.L. Hench, Expert Rev. Med. Devices 3(2), 215–234 (2006)

    Article  Google Scholar 

  31. 31.

    O. Samek, K. Mlynariková, S. Bernatová, J. Ježek, V. Krzyžánek, M. Šiler, P. Zemánek, F. Růžička, V. Holá, M. Mahelová, Int. J. Mol. Sci. 15(12), 23924–23935 (2014)

    Article  Google Scholar 

  32. 32.

    M.A. Kohanski, D.J. Dwyer, J.J. Collins, Nat. Rev. Microbiol. 8(6), 423–435 (2010)

    Article  Google Scholar 

  33. 33.

    M.A. Kohanski, D.J. Dwyer, B. Hayete, C.A. Lawrence, J.J. Collins, Cell 130(5), 797–810 (2007)

    Article  Google Scholar 

  34. 34.

    K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, S.M. Block, Biophys. J. 77(5), 2856–2863 (1999)

    Article  Google Scholar 

  35. 35.

    N.N. Brandt, O.O. Brovko, A.Y. Chikishev, O.D. Paraschuk, Appl. Spectrosc. 60(3), 288–293 (2006)

    ADS  Article  Google Scholar 

  36. 36.

    N. Schleimer, U. Kaspar, D. Knaack, Ch. von Eiff, S. Molinaro, H. Grallert, E.A. Idelevich, K. Becker, Int. J. Mol. Sci 20(3), 716 (2019)

    Article  Google Scholar 

  37. 37.

    B.E. Domaracki, A.M. Evans, R.A. Venezia, Antimicrob. Agents. Chemother. 44(5), 1394–1396 (2000)

    Article  Google Scholar 

  38. 38.

    J. Janardhanan, J.E. Meisel, D. Ding, V.A. Schroeder, W.R. Wolter, S. Mobashery, M. Chang, Antimicrob. Agents. Chemother. 60(9), 5581–5588 (2016)

    Article  Google Scholar 

  39. 39.

    C. Chuard, J.C. Lucet, P. Rohner, M. Herrmann, R. Auckenthaler, F.A. Waldvogel, D.P. Lew, J. Infect. Dis. 163(6), 1369–1373 (1991)

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support by the Czech Science Foundation (GA19-20697S, GF19-29651L) and European Regional Development Fund (CZ.02.1.01/0.0/0.0/15 003/0000476).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Bernatová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernatová, S., Rebrošová, K., Pilát, Z. et al. Rapid detection of antibiotic sensitivity of Staphylococcus aureus by Raman tweezers. Eur. Phys. J. Plus 136, 233 (2021). https://doi.org/10.1140/epjp/s13360-021-01152-1

Download citation