Abstract
We propose a Lagrangian formulation for a varying G Newtonian-like theory inspired by the Brans–Dicke gravity. Rather than imposing an ad hoc dependence for the gravitational coupling, as previously done in the literature, in our proposal, the running of G emerges naturally from the internal dynamical structure of the theory. We explore the features of the resulting gravitational field for static and spherically symmetric mass distributions as well as within the cosmological framework.
This is a preview of subscription content, access via your institution.


References
- 1.
M. Clifford, The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). arXiv:1403.7377 [gr-qc]
- 2.
M. Armano, H. Audley, G. Auger, J.T. Baird et al., Sub-femto-\(g\) free fall for space-based gravitational wave observatories: lisa pathfinder results. Phys. Rev. Lett. 116, 231101 (2016)
- 3.
J.P. Schwarz, D.S. Robertson, T.M. Niebauer, J.E. Faller, A free-fall determination of the Newtonian constant of gravity. Science 282, 2230–2234 (1998)
- 4.
St Schlamminger, E. Holzschuh, W. Kündig, F. Nolting, R.E. Pixley, J. Schurr, U. Straumann, Measurement of Newton’s gravitational constant. Phys. Rev. D 74, 082001 (2006)
- 5.
H.V. Parks, J.E. Faller, Simple pendulum determination of the gravitational constant. Phys. Rev. Lett. 105, 110801 (2010)
- 6.
A. Bertoldi, L. Cacciapuoti, M. de Angelis, R.E. Drullinger, G. Ferrari, G. Lamporesi, N. Poli, M. Prevedelli, F. Sorrentino, G.M. Tino, Atom Interferometry for Precision Tests of Gravity: Measurement of G and Test of Newtonian Law at Micrometric Distances, in The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity. Gravitation and Relativistic Field Theories (2008), pp. 2519–2529
- 7.
G. Rosi, Challenging the ‘BigG’ measurement with atoms and light. J. Phys. B At Mol Opt Phys 49, 202002 (2016)
- 8.
K. Koyama, J. Sakstein, Astrophysical probes of the Vainshtein mechanism: stars and galaxies. Phys. Rev. D 91, 124066 (2015). arXiv:1502.06872 [astro-ph.CO]
- 9.
P. Brax, Screening mechanisms in modified gravity. Class. Quantum Gravity 30, 214005 (2013)
- 10.
J. Khoury, Chameleon field theories. Class. Quantum Gravity 30, 214004 (2013). arXiv:1306.4326 [astro-ph.CO]
- 11.
E. Babichev, C. Deffayet, An introduction to the Vainshtein mechanism. Class. Quantum Gravity 30, 184001 (2013)
- 12.
K. Koyama, Cosmological tests of modified gravity. Rept. Prog. Phys. 79, 046902 (2016). arXiv:1504.04623 [astro-ph.CO]
- 13.
M. Ishak, Testing general relativity in cosmology. Living Rev. Rel. 22, 1 (2019). arXiv:1806.10122 [astro-ph.CO]
- 14.
J.G. Williams, S.G. Turyshev, D.H. Boggs, Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)
- 15.
E.A. Milne, Relativity, Gravitation and World-Structure (The Clarendon Press, Oxford, 1935)
- 16.
P.A.M. Dirac, The cosmological constants. Nature 139, 323 (1937)
- 17.
P.A.M. Dirac, New basis for cosmology. Proc. R. Soc. Lond. A A165, 199–208 (1938)
- 18.
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)
- 19.
J.-P. Uzan, Varying constants, gravitation and cosmology. Living Rev. Rel. 14, 2 (2011). arXiv:1009.5514 [astro-ph.CO]
- 20.
P.S. Wesson, The implications for geophysics of modern cosmologies in which G is variable. Q. J. R. Astron. Soc. 14, 9 (1973)
- 21.
M.C. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993)
- 22.
L.F. Pavsteka, A. Borschevsky, V.V. Flambaum, P. Schwerdtfeger, Search for the variation of fundamental constants: strong enhancements in X\(\Pi \)2 cations of dihalogens and hydrogen halides. Phys. Rev. A 92, 012103 (2015). arXiv:1502.04451 [physics.chem-ph]
- 23.
A.M.M. Pinho, C.J.A.P. Martins, Updated constraints on spatial variations of the fine-structure constant. Phys. Lett. B 756, 121–125 (2016). arXiv:1603.04498 [astro-ph.CO]
- 24.
N.S. Oreshkina, S.M. Cavaletto, N. Michel, Z. Harman, C.H. Keitel, Hyperfine splitting in simple ions for the search of the variation of fundamental constants. Phys. Rev. A 96, 030501 (2017). arXiv:1703.09943 [physics.atom-ph]
- 25.
C. Negrelli, L. Kraiselburd, S.J. Landau, E. García-Berro, Spatial variation of fundamental constants: testing models with thermonuclear supernovae. Int. J. Mod. Phys. D 27, 1850099 (2018). arXiv:1804.01521 [astro-ph.CO]
- 26.
M.S. Safronova, The search for variation of fundamental constants with clocks. Ann. Phys. 531, 1800364 (2019)
- 27.
C.J.A.P. Martins, M.P. Colomer, Fine-structure constant constraints on late-time dark energy transitions. Phys. Lett. B 791, 230–235 (2019). arXiv:1903.04310 [astro-ph.CO]
- 28.
L. Giani, E. Frion, Testing the equivalence principle with strong lensing time delay variations (2020). arXiv:2005.07533 [astro-ph.CO]
- 29.
P.T. Landsberg, N.T. Bishop, A principle of impotence allowing for Newtonian cosmologies with a time-dependent gravitational constant. Mon. Not. R. Astrn. Soc. 171, 279–286 (1975)
- 30.
G.C. McVittie, Newtonian cosmology with a time-varying constant of gravitation. Mon. Not. R. Astron. Soc. 183, 749–764 (1978)
- 31.
C. Duval, G.W. Gibbons, P. Horvathy, Celestial mechanics, conformal structures and gravitational waves. Phys. Rev. D 43, 3907–3922 (1991). arXiv:hep-th/0512188
- 32.
D.M. Christodoulou, D. Kazanas, Interposing a varying gravitational constant between modified Newtonian dynamics and weak Weyl gravity. Mon. Not. R. Astron. Soc. Lett. 479, L143–L147 (2018)
- 33.
J.D. Barrow, Time-varying G. Mon. Not. R. Astron. Soc. 282, 1397–1406 (1996)
- 34.
C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)
- 35.
E.A. Milne, A Newtonian expanding universe. Q. J. Math os–5, 64–72 (1934)
- 36.
W.H. McCrea, E.A. Milne, Newtonian universes and the curvature of space. Q. J. Math. os–5, 73–80 (1934)
- 37.
G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974)
Acknowledgements
We dedicate this work to the memory of Antonio Brasil Batista, one the founders of the research group Cosmo-ufes, who has introduced us to the problem of the variation of the gravitational coupling in newtonian and relativistic theories. We thank Davi C. Rodrigues for enlightening discussions on the subject of this paper. JCF thanks CNPq and FAPES for partial financial support. HV thanks CNPq and PROPP/UFOP for partial financial support. JDT thanks FAPES and CAPES for their support through the Profix program. TG thanks FAPES for their support.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fabris, J.C., Gomes, T., Toniato, J.D. et al. Newtonian-like gravity with variable G. Eur. Phys. J. Plus 136, 143 (2021). https://doi.org/10.1140/epjp/s13360-021-01146-z
Received:
Accepted:
Published: