Radiation and convection treatment of nanomaterial within a Linear Fresnel Reflector unit

Abstract

To absorb more solar flux, the tube of LFR system was equipped with Y-shaped fins in current investigation. The fluid in tube is H2O with inclusion of alumina nanoparticles. Installing mirrors with special angles and installing parabolic reflector above the tube lead to greatest optical performance. Turbulent regime was assumed and K-ɛ approach was used for modeling. Reasonable accommodation with data of empirical correlations indicates nice accuracy of simulation. Influences of operation factors on carrier fluid thermal behavior were presented. Also, exergy efficiency, irreversibility and Be were scrutinized. DO model with employment of conditions of pure radiation was utilized to compute the solar heat flux. Better flow mixing takes places if values of Vin, L1 and L2 augment because residence time grows. Increase in Tin offers lower cooling rate and higher wall temperature appears. Increasing Vin, L1 and L2 makes tube temperature to decline about 0.457%, 0.109% and 0.194% with assuming lowest level of other factors. Also, increasing Tin offers augmentation of tube temperature about 9.93%. Darcy factor drops with grow of L1 and L2 about 47.27% and 37.42% when Vin = 0.16, Tin = 293.15 K. As Vin augments, Nu intensifies about 82.71% when L1 = L2 = 2 mm. Nu increases with augment of L1 about 15.67%. Sgen,h declines about 9.82% with augment of L1 while Sgen,f augments about 51.68% with rise of this variable. Be decreases about 1.13% and 0.108% with intensify of Vin and L2, respectively. The value of \(\eta_{{{\text{th}}}}\) augments with rise of Vin about 1.08% while it reduces about 23.43% with growth of Tin. With rise of L1, \(\eta_{{{\text{ex}}}}\) and \(\eta_{{{\text{th}}}}\) enhance about 0.67% and 0.09% when L2 = 2 mm, Vin = 0.16, Tin = 293.15 K.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    P. Boito, R. Grena, Optimal focal length of primary mirrors in Fresnel linear collectors. Sol. Energy 155, 1313–1318 (2017)

    ADS  Article  Google Scholar 

  2. 2.

    N. Hordy, D. Rabilloud, J.-L. Meunier, S. Coulombe, High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol. Energy 105, 82–90 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    Zhu, W., Zhang, Z., Chen, D., Chai, W., Chen, D., Zhang, J., et al. (2020). Interfacial voids trigger carbon-based, all-inorganic CsPbIBr2 perovskite solar cells with photovoltage exceeding 1.33 V. Nano-micro Lett. 12(1), 1–14. doi: https://doi.org/10.1007/s40820-020-00425-1

  4. 4.

    H. Wang, W. Yang, L. Cheng, C. Guan, H. Yan, Chinese ink: high performance nanofluids for solar energy. Sol. Energy Mater. Sol. Cells 176, 374–380 (2018)

    Article  Google Scholar 

  5. 5.

    G. Wang, Y. Yao, Z. Chen, P. Hu, Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy 166, 256–266 (2019). https://doi.org/10.1016/j.energy.2018.10.089

    Article  Google Scholar 

  6. 6.

    S.U. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (Argonne National Lab, Lemont, 1995).

    Google Scholar 

  7. 7.

    X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)

    Article  Google Scholar 

  8. 8.

    E. Mathioulakis, E. Papanicolaou, V. Belessiotis, Optical performance and instantaneous efficiency calculation of linear F resnel solar collectors. Int. J. Energy Res. 42(3), 1247–1261 (2018)

    Article  Google Scholar 

  9. 9.

    E. Bellos, C. Tzivanidis, Investigation of a nanofluid-based concentrating thermal photovoltaic with a parabolic reflector. Energy Convers. Manag. 180, 171–182 (2019)

    Article  Google Scholar 

  10. 10.

    T. Singh, I. W. Almanassra, A. Ghani Olabi, T. Al-Ansari, G. McKay, M. Ali Atieh, Performance investigation of multiwall carbon nanotubes based water/oil nanofluids for high pressure and high temperature solar thermal technologies for sustainable energy systems. Energy Convers. Manag. 225 (2020) 113453

  11. 11.

    A. Allouhi, M. Benzakour Amine, Heat pipe flat plate solar collectors operating with nanofluids. Sol. Energy Mater. Sol. Cells 219 (2021) 110798.

  12. 12.

    X. Wang, S. Luo, T. Tang, X. Liu, Y. He, A MCRT-FVM-FEM coupled simulation for optical-thermal-structural analysis of parabolic trough solar collectors. Energy Procedia 158, 477–482 (2019)

    Article  Google Scholar 

  13. 13.

    P.K. Kundu, A. Sarkar, Multifarious slips perception on unsteady Casson nanofluid flow impinging on a stretching cylinder in the presence of solar radiation. Eur. Phys. J. Plus 132(3), 144 (2017)

    Article  Google Scholar 

  14. 14.

    A.F. Ali, Khan I., Sheikh N.A., Gohar M., Exact solutions for the Atangana–Baleanu time-fractional model of a Brinkman-type nanofluid in a rotating frame: applications in solar collectors. Eur. Phys. J. Plus 134(3) (2019) 119.

  15. 15.

    N.A. Sheikh, F. Ali, I. Khan, M. Gohar, M. Saqib, On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. Eur. Phys. J. Plus 132(12), 540 (2017)

    Article  Google Scholar 

  16. 16.

    A. Vouros, E. Mathioulakis, E. Papanicolaou, V. Belessiotis, On the optimal shape of secondary reflectors for linear Fresnel collectors. Renew. Energy 143, 1454–1464 (2019)

    Article  Google Scholar 

  17. 17.

    E. Bellos, E. Mathioulakis, C. Tzivanidis, V. Belessiotis, K.A. Antonopoulos, Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver. Energy Convers. Manag. 130, 44–59 (2016)

    Article  Google Scholar 

  18. 18.

    B.S. Negi, S.S. Mathur, T.C. Kandpal, Optical and thermal performance evaluation of a linear Fresnel reflector solar concentrator. Sol. Wind Technol. 6(5), 589–593 (1989)

    Article  Google Scholar 

  19. 19.

    S. Kim, H. Song, K. Yu, B. Tserengombo, S.-H. Choi, H. Chung, J. Kim, H. Jeong, Comparison of CFD simulations to experiment for heat transfer characteristics with aqueous Al2O3 nanofluid in heat exchanger tube. Int. Commun. Heat Mass Transf. 95, 123–131 (2018)

    Article  Google Scholar 

  20. 20.

    ANSYS® Academic Research, release 18.1, ANSYS FLUENT, Theory Guide, ANSYS, Inc.

  21. 21.

    M.F. Modest (2013) Radiative Heat Transfer, 3rd edn. Elsevier, Amsterdam, doi: https://doi.org/10.1016/B978-0-12-386944-9.50018-2

  22. 22.

    A. Shafee, M. Jafaryar, A.I. Alsabery, A. Zaib, H. Babazadeh, Entropy generation of nanomaterial through a tube considering swirl flow tools. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09563-5

    Article  Google Scholar 

  23. 23.

    H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd edn. (Pearson/Prentice Hall, Harlow, 2007).

    Google Scholar 

  24. 24.

    R.N.T. Flows-Model, T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new Kepsilon Eddy viscosity model for high reynolds number turbulent flows: model development and validation, August, 1994.

  25. 25.

    F.J. Wasp, Solid-Liquid Flow Slurry Pipeline Transportation (Trans Tech Publications, Berlin, 1997).

    Google Scholar 

  26. 26.

    B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Exp. Heat Transf. 11(2), 151–170 (1998)

    ADS  Article  Google Scholar 

  27. 27.

    H.C. Brinkman, The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952)

    ADS  Article  Google Scholar 

  28. 28.

    E. Bellos, C. Tzivanidis, D. Tsimpoukis, Multi-criteria evaluation of parabolic trough collector with internally finned absorbers. Appl. Energy 205, 540–561 (2017)

    Article  Google Scholar 

  29. 29.

    F.P. Incropera, P.D. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, 2006).

    Google Scholar 

  30. 30.

    M.Z. Yakut, A. Karabuğa, A. Kabul, R. Selbaş, Chapter 2.17: Design, energy and exergy analyses of linear fresnel reflector, in Exergetic, Energetic and Environmental Dimensions. ed. by I. Dincer, C.O. Colpan, O. Kizilkan (Academic Press, Cambridge, 2018), pp. 523–532

    Google Scholar 

  31. 31.

    R. Petela, Exergy of undiluted thermal radiation. Sol. Energy 74(6), 469–488 (2003)

    ADS  Article  Google Scholar 

  32. 32.

    J.A. Duffie, W.A. Beckman, Optical performance of concentrating collectors. In: J.W. Sons (eds) Solar Engineering of Thermal Processes, 2013.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimpour, Z., Sheikholeslami, M. & Farshad, S.A. Radiation and convection treatment of nanomaterial within a Linear Fresnel Reflector unit. Eur. Phys. J. Plus 136, 201 (2021). https://doi.org/10.1140/epjp/s13360-021-01141-4

Download citation