Skip to main content
Log in

Mathematical modeling of magneto-peristaltic propulsion of a viscoelastic fluid through a complex wavy non-uniform channel: an application of hall device in bio-engineering domains

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 16 February 2021

This article has been updated

Abstract

Applications of the Hall device into both the biological and engineering domains have been investigated in the current study. A complex peristaltic driven flow of a viscoelastic fluid is considered through a non-uniform regime having wavy walls under the magnetic and Hall effects. The physical influences of magnetic and Hall parameters on different rheological features of biomimetic propulsion in the wave frame are highlighted in details. Due to the complex nature of the flow regime, the curvilinear coordinates are used in the derivation of continuity and momentum equations. The flow analysis is based on creeping phenomena and long wavelength approximations. Analytical solutions of the governing equations are difficult to obtain due to complicated and complex mathematical form of partial differential equations. Numerical solutions of the governing equations are obtained with the help of the versatile BVP4C command in MATLAB software. The main objective of the current study is to observe the physical behavior of embedded parameters such as dimensionless radius of curvature, Hartmann number (magnetic parameter), Hall parameter, phase difference, non-uniform parameter, and viscoelastic (time relaxation and retardation) parameters on the axial velocity, stream function, pressure gradient, pumping, and trapping phenomena. Moreover, the comparison between viscous and viscoelastic fluids has been argued in detail through graphs. This research work provides comprehensive information about the magnetic and Hall devices, respectively, that are more productive to control the flow of biological fluids through the non-uniform nature of vessels. This study has numerous applications in micro-scale devices of biomedical and industrial domains, cooling systems in nuclear power stations, magnetic therapy, hydrology, physiological drug delivery systems, blood pumping, and micro devices used during surgical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Change history

References

  1. T.W. Latham, Fluid motion in a Peristaltic Pump, MS thesis, (MIT, Cambridge, AMA, 1966)

  2. J.C. Burns, T. Parkes, Peristaltic motion, J. Fluid Mech. 29 731–743 (1967)

    Article  ADS  Google Scholar 

  3. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech. 37 799–813 (1969)

    Article  ADS  Google Scholar 

  4. C. Barton, S. Raynor, Analytical investigation of cilia induced mucous flow. Bull. Math. Biophys. 1 419–428 (1967)

    Article  Google Scholar 

  5. Kh.S. Mekheimer, S.Z.-A. Husseny, A.I. Abd el Lateef, Effect of lateral walls on peristaltic flow through an asymmetric rectangular duct. Appl. Bion. Biomech. 8 295–308 (2011)

    Article  Google Scholar 

  6. T. Hayat, N. Ali, S. Asghar, A.M. Siddiqui, Exact peristaltic flow in tubes with an endoscope. Appl. Math. Comput. 182 359–368 (2006)

    MathSciNet  MATH  Google Scholar 

  7. T. Hayat, N. Ali, S. Asghar, An analysis of peristaltic transport for flow of a Jeffrey fluid. Acta Mech. 193 101–112 (2007)

    Article  MATH  Google Scholar 

  8. D. Tripathi, N.Ali, T. Hayat, M.K. Chaube, A. A. Hendi, Peristaltic flow of MHD Jeffrey fluid through finite length cylindrical tube. Appl. Math. Mech. 32 1231–1244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Hayat, N. Ahmad, N. Ali, Effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid. Commun Nonlinear Sci Numer Simul. 13 1581–1591 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. T. Hayat, N. Ali, Peristaltic motion of a Jeffrey fluid under the effect of magnetic field in a tube. Commun Nonlinear Sci Numer Simul. 13 1343–1352 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A.M. Abd-Alla, S.M. Abo-Dahab, A. Kilicman, Peristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with endoscope. J. Magn Magn Mater. 384 79–86 (2015)

    Article  ADS  Google Scholar 

  12. A.M. Abdulhadi, T.S. Ahmed, Effect of radial magnetic field on peristaltic transport of Jeffrey fluid in curved channel with heat /mass transfer. J. Phys. Conf. Ser. 1003 012053 (2018). https://doi.org/10.1088/1742-6596/1003/1/012053

    Article  Google Scholar 

  13. Y.M. Aiyesimi, G.T. Okedayo, O.W. Lawal, Analysis of magnetohydrodynamics flow of a dusty viscoelastic fluid through a horizontal circular channel. Acad. J. Sci. Res. 1 056–062 (2013)

    Google Scholar 

  14. K.K. Raju, R. Devanathan, Peristaltic motion of a non-Newtonian fluid II: viscoelastic fluid. Rheol. Acta 13 944–948 (1974)

    Article  MATH  Google Scholar 

  15. M.F. El-Sayed, M.H. Haroun, D.R. Mostapha, Electrohydrodynamic peristaltic flow of a dielectric Oldroydian viscoelastic fluid in a flexible channel with heat transfer. J. Appl. Mech. Tech. Phys. 55 565–577 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. D. Tripathi, A. Yadav, O. Anwar Bég, Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: mathematical modelling, Math. Biosci. 283 155–168 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. O.A. Bég, M.M. Rashidi, Multi-Step DTM simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid, Int. J. Appl. Math. Mech. 9 22–40 (2013)

    Google Scholar 

  18. T. Takahashi, H. Ogoshi, K. Miyamoto, M.L. Yao, Viscoelastic properties of commercial plain yoghurts and trial foods for swallowing disorders, Rheology 27 169–172 (1999)

    Google Scholar 

  19. J.C. Misra, S.K. Pandey, Peristaltic transport of blood in small vessels: study of a mathematical model, Comput. Math. Appl. 43 1183–1193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. L.M. Srivastava, V.P. Srivastava, Peristaltic transport of blood: Casson model—II. J. Biomech. 17(11) 821–829 (1984)

    Article  Google Scholar 

  21. H. Sato, T. Kawai, T. Fujita, M. Okabe, Two dimensional peristaltic flow in curved channels, Trans. Jpn. Soc. Mech. Eng. B 66 679–685 (2000)

    Article  Google Scholar 

  22. N. Ali, M. Sajid, T. Hayat, Long wavelength flow analysis in a curved channel, Z. Naturforschung A 65a 191–196 (2010)

    Article  ADS  Google Scholar 

  23. N. Ali, M. Sajid, Z. Abbas, T. Javed, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, Eur. J. Mech.B Fluids, 29 387–394 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Hayat, T., Maryiam Javed, and Awatif A. Hendi. "Peristaltic transport of viscous fluid in a curved channel with compliant walls. Int. J. Heat Mass Transf. 54(7–8) 1615–1621 (2011)

    Article  MATH  Google Scholar 

  25. S. Hina, T. Hayat, A. Alsaedi, Heat and mass transfer effects on the peristaltic flow of Johnson-Segalman fluid in a curved channel with compliant walls, Int. J. Heat Mass Transf. 55 351 (2012)

    Article  Google Scholar 

  26. N. Ali, K. Javid, M. Sajid, O.A. Beg, Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel, Comput. Methods BioMech. BioMed. Eng. (2015). https://doi.org/10.1080/10255842.2015.1055257

    Article  Google Scholar 

  27. N. Ali, K. Javid, M. Sajid, A. Zaman, T. Hayat, Numerical simulations of Oldroyd 8-constant fluid flow and heat transfer in a curved channel, Int. J. Heat and Mass Transfer, 94 500–508 (2016)

    Article  Google Scholar 

  28. N. Ali, M. Sajid, K. Javid, R. Ahmed. Peristaltic Flow of Rabinowitsch Fluid in a Curved Channel: Mathematical Analysis Revisited, Zeitschrift für Naturforschung A, 72 245–251 (2017)

    Article  ADS  Google Scholar 

  29. Javid, K., N. Ali, M. Sajid. Simultaneous effects of viscoelasticity and curvature on peristaltic flow through a curved channel. Meccanica 51(1) 87–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Javid, N. Ali, Z Asghar. Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic wave profiles, J. Braz. Soc. Mech. Sci. Eng. 41(11) 483 (2019)

    Article  Google Scholar 

  31. K. Javid, N. Ali, S. Khan,Numerical study of Hall effects on the peristaltically induced motion of a viscous fluid through a non-uniform regime: an application to the medical science Eur. Phys. J. Plus 134(8) 395 (2019)

    Article  Google Scholar 

  32. K. Javid, N. Ali, Z. Asghar, Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non-uniform channel with magnetohydrodynamic effects. Phys. Scr. 94(11) 115226 (2019)

    Article  ADS  Google Scholar 

  33. J. Khurram, S.U.-D. Khan, M. Hassan, U. Saeed, S.T.R. Rizvi, S.U.-D. Khan, Peristaltic transportation of fluid through simple and complex wavy non-uniform channels: a bio-engineering application

  34. S. Hina, M. Mustafa, T. Hayat, A. Alsaedi, Peristaltic flow of pseudo plastic fluid in a curved channel with wall properties. ASME J. Appl. Mech. 80 024501 (80)

    Article  ADS  Google Scholar 

  35. V.K. Narla, K.M. Prasad, J.V. Ramanamurthy, Peristaltic motion of viscoelastic fluid with fractional second grade model in curved channels. Chin. J. Eng. 582390 (2013)

  36. J.V. Ramanamurthy, K.M. Prasad, V.K. Narla, Unsteady peristaltic transport in curved channels. Phys. Fluids 58 222-234 (2013)

    MATH  Google Scholar 

  37. A.A. Kalantari, K. Sadeghy, S. Sadeqi, Peristaltic flow of non-Newtonian fluids through curved channels: a numerical study. Ann. Trans. Nordic Rheol. Soc. 21 11155 (2013)

    Google Scholar 

  38. K. Javid, N. Ali, S. Khan, Numerical study of hall effects on peristaltically induced motion of a viscous fluid through a non-uniform regime: an application to the medical science. Eur. Phys. J. Plus (2019). https://doi.org/10.1140/Epjp/I2019-12717-8

    Article  Google Scholar 

  39. N. Ali, K. Javid, M. Sajid, T. Hayat, New concept about existence of Hartmann boundary layer in peristalsis through curved channel-asymptotic solution. Meccanica 51 1783–1795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. K.S. Mekheimer, Peristaltic transport of a couple stress fluid in a uniform and non-uniform channels. Biorheology 39 755–765 (2002)

    Google Scholar 

  41. Kh.S. Mekheimer, Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels. Appl. Math. Comput. 153 763–777 (153)

    MathSciNet  MATH  Google Scholar 

  42. S. Noreen, M. Sajid Steady flow of a fourth grade fluid in a porous medium. J. Porous Media 13 1 (2010)

    Google Scholar 

  43. T. Hayat, N. Ali, S. Asghar, Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Phys. Lett. A 363(5–6) 397–403 (363)

    Article  ADS  MATH  Google Scholar 

  44. T. Hayat, M. Iqbal, H. Yasmin, F. Alsaadi, Hall effects on peristaltic flow of couple stress fluid in an inclined asymmetric channel. Int. J. Biomath. 7(05) 1450057 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Hayat, S. Farooq, A. Alsaedi, B. Ahmad, Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer. J. Magn. Magn. Mater. 412 207–216 (2016)

    Article  ADS  Google Scholar 

  46. N.S. Gad, Effects of hall currents on peristaltic transport with compliant walls. Appl. Math. Comput. 235 546–554 (2014)

    MathSciNet  MATH  Google Scholar 

  47. F.M. Abbasi, I. Shanakhat, S.A. Shehzad, Analysis of entropy generation in peristaltic nanofluid flow with Ohmic heating and Hall current. Phys. Scr. 94(2) 025001 (2019)

    Article  ADS  Google Scholar 

  48. D. Tripathi, R. Jhorar, o.A. Bég, A. Kadir, Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. J. Mol. Liq. 236 358–367 (2017)

    Article  Google Scholar 

  49. Z. Asghar, N. Ali, M. Sajid, Mechanical effects of complex rheological liquid on a microorganism propelling through a rigid cervical canal: swimming at low Reynolds number. J. Braz. Soc. Mech. Sci. Eng. 40(9) 475 (2018)

    Article  Google Scholar 

  50. Z. Asghar, N. Ali, M. Waqas, M.A. Javed, An implicit finite difference analysis of magnetic swimmers propelling through non-Newtonian liquid in a complex wavy channel. Comput. Math. Appl. 79(8) 2189–2202 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Tripathi, A. Yadav, O.A. Bég, R. Kumar, 8 Study of microvascular non-Newtonian blood flow modulated by electroosmosis Microvasc. Res. 117 28–36 (2018)

    Article  Google Scholar 

  52. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice Hall, Upper Saddle River, 1999)

    Google Scholar 

  53. B.I. Bleaney, B.I. Bleaney, B. Bleaney Electricity and Magnetism 2nd edn. (Oxford University Press Oxford, 2013)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the respected review for his/her informative and constructive suggestions to improve the quality of research. This project was supported by Researchers Supporting Project number (RSP-2020/5) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Javid.

Additional information

The original online version of this article was revised: In the original publication of the article, unfortunately the family name of the second author was wrong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, K., Khan, S.UD., Khan, S.UD. et al. Mathematical modeling of magneto-peristaltic propulsion of a viscoelastic fluid through a complex wavy non-uniform channel: an application of hall device in bio-engineering domains. Eur. Phys. J. Plus 136, 182 (2021). https://doi.org/10.1140/epjp/s13360-021-01140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01140-5

Navigation