Quaternionic quantum harmonic oscillator

Abstract

In this article we obtained the harmonic oscillator solution for quaternionic quantum mechanics (\(\mathbb {H}\)QM) in the real Hilbert space, both in the analytic method and in the algebraic method. The quaternionic solutions have many additional possibilities if compared to complex quantum mechanics (\(\mathbb {C}\)QM), and thus there are many possible applications to these results in future research.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. P. Morais; S. Georgiev; W. Sprössig. Real Quaternionic Calculus Handbook. Birkhäuser, (2014)

  2. 2.

    J. Vaz, R. da Rocha, An Introduction to Clifford Algebras and Spinors (Oxford University Press, Oxford, 2016)

    Google Scholar 

  3. 3.

    D. J. H. Garling. “Clifford algebras: an introduction”. (2011)

  4. 4.

    G.M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics (Springer, Berlin, 1994)

    Google Scholar 

  5. 5.

    J.P. Ward, Quaternions and Cayley numbers (Springer, Dordrecht, 1997)

    Google Scholar 

  6. 6.

    S.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press, Oxford, 1995)

    Google Scholar 

  7. 7.

    A.J. Davies, B.H.J. McKellar, Nonrelativistic quaternionic quantum mechanics in one dimension. Phys. Rev. A 40, 4209–4214 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    A.J. Davies, B.H.J. McKellar, Observability of quaternionic quantum mechanics. Phys. Rev. A 46, 3671–3675 (1989)

    ADS  Article  Google Scholar 

  9. 9.

    S. De Leo, G. Ducati, Quaternionic differential operators. J. Math. Phys 42, 2236–2265 (2001)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    S. De Leo, G. Ducati, C. Nishi, Quaternionic potentials in non-relativistic quantum mechanics. J. Phys A35, 5411–5426 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  11. 11.

    S. De Leo, G. Ducati, Quaternionic bound states. J. Phys. A35, 3443–3454 (2005)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    S. De Leo, G. Ducati, T. Madureira, Analytic plane wave solutions for the quaternionic potential step. J. Math. Phys. 47, 082106–15 (2006)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    S. De Leo, G. Ducati, Quaternionic wave packets. J. Math. Phys 48, 052111–10 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    A.J. Davies, Quaternionic Dirac equation. Phys. Rev. D 41, 2628–2630 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    S. De Leo, S. Giardino, Dirac solutions for quaternionic potentials. J. Math. Phys. 55, 022301–10 (2014). arXiv:1311.6673 [math-ph]

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    S. De Leo, G. Ducati, S. Giardino, Quaternioninc Dirac Scattering. J. Phys. Math. 6, 1000130 (2015). arXiv:1505.01807 [math-ph]

    MATH  Google Scholar 

  17. 17.

    S. Giardino, Quaternionic particle in a relativistic box. Found. Phys. 46(4), 473–483 (2016). arXiv:1504.00643 [quant-ph]

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    H. Sobhani, H. Hassanabadi, Scattering in quantum mechanics under quaternionic Dirac delta potential. Can. J. Phys. 94, 262–266 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    L.M. Procopio, L.A. Rozema, B. Dakić, P. Walther, Comment on Peres experiment using photons: no test for hypercomplex (quaternionic) quantum theories. Phys. Rev. A 96(3), 036101 (2017)

    ADS  Article  Google Scholar 

  20. 20.

    H. Sobhani, H. Hassanabadi, W.S. Chung, Observations of the Ramsauer–Townsend effect in quaternionic quantum mechanics. Eur. Phys. J. C 77(6), 425 (2017)

    ADS  Article  Google Scholar 

  21. 21.

    H. Hassanabadi, H. Sobhani, A. Banerjee, Relativistic scattering of fermions in quaternionic quantum mechanics. Eur. Phys. J. C 77(9), 581 (2017)

    ADS  Article  Google Scholar 

  22. 22.

    H. Hassanabadi, H. Sobhani, W.S. Chung, Scattering study of fermions due to double Dirac delta potential in quaternionic relativistic quantum mechanics. Adv. High Energy Phys. 2018, 8124073 (2018)

    MATH  Article  Google Scholar 

  23. 23.

    P.A. Bolokhov, Quaternionic wave function. Int. J. Mod. Phys. A 34(02), 1950001 (2019)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    S. de Leo, C.A.A. de Souza, G. Ducati, Quaternionic perturbation theory. Eur. Phys. J. Plus 134(3), 113 (2019)

    Article  Google Scholar 

  25. 25.

    M. Cahay, G.B. Purdy, D. Morris, On the quaternion representation of the Pauli spinor of an electron. Phys. Scripta 94(8), 085205 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    A.I. Arbab, The quaternionic quantum mechanics. Appl. Phys. Res. 3, 160–170 (2011)

    Article  Google Scholar 

  27. 27.

    D.C. Brody, E.-V. Graefe, Six-dimensional space-time from quaternionic quantum mechanics. Phys. Rev. D 84, 125016 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    J. Morais, Computational aspects of the continuum quaternionic wave functions for hydrogen. Ann. Phys. 349, 171–188 (2014)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    M. Kober, Quaternionic quantization principle in general relativity and supergravity. Int. J. Mod. Phys. A 31(04n05), 1650004 (2016)

    ADS  MATH  Article  Google Scholar 

  30. 30.

    S.B. Tabeu, F. Fotsa-Ngaffo, A. Kenfack-Jiotsa, Non-Hermitian Hamiltonian of two-level systems in complex quaternionic space: an introduction in electronics. EPL 125(2), 24002 (2019)

    ADS  Article  Google Scholar 

  31. 31.

    B.C. Chanyal, Quaternionic approach on the Dirac–Maxwell, Bernoulli and Navier–Stokes equations for dyonic fluid plasma. Int. J. Mod. Phys. A 34(31), 1950202 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    S. Giardino, Non-anti-hermitian Quaternionic Quantum Mechanics. Adv. Appl. Clifford Algebras 28(1), 19 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    S. Giardino, Quaternionic quantum mechanics in real Hilbert space. J. Geom. Phys. 158, 103956 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    S. Giardino, Quaternionic Aharonov–Bohm effect. Adv. Appl. Clifford Algebras 27(3), 2445–2456 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    S. Giardino, Quaternionic quantum particles. Adv. Appl. Clifford Algebras 29(4), 83 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    S. Giardino. “Quaternionic quantum particles: new solutions”. Can. J. Phys. (accept) arXiv:1706.08370 [quant-ph]

  37. 37.

    S. Giardino, Square-well potential in quaternionic quantum mechanics. Europhys. Lett. 132, 20007 (2020)

    Article  Google Scholar 

  38. 38.

    S. Giardino, Virial theorem and generalized momentum in quaternic quantum mechanics. Eur. Phys. J. Plus 135(1), 114 (2020)

    Article  Google Scholar 

  39. 39.

    S. Giardino, Quaternionic electrodynamics. Mod. Phys. Lett. A 35, 2050327 (2020)

    MathSciNet  Article  Google Scholar 

  40. 40.

    S. Giardino. “Quaternionic elastic scattering”. accept by Europhys. Lett. arXiv:2011.05743 [quant-ph] (2020)

  41. 41.

    M. Hasan, B.P. Mandal, New scattering features of quaternionic point interaction in non-Hermitian quantum mechanics. J. Math. Phys. 61(3), 032104 (2020)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    F. Harvey, Spinors and Calibrations (Academic Press, Cambridge, 1990)

    Google Scholar 

  43. 43.

    D. Finkelstein, J.M. Jauch, S. Shiminovich, D. Speiser, Foundations of quaternion quantum mechanics. J. Math. Phys. 3, 207–220 (1962)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    B. Muraleetharan, K. Thirulogasanthar, Coherent state quantization of quaternions. J. Math. Phys. 56(8), 083510 (2015)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    B. Muraleetharan, K. Thirulogasanthar, I. Sabadini, A representation of Weyl–Heisenberg Lie algebra in the quaternionic setting. Ann. Phys. 385, 180–213 (2017)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    A. Messiah, Quantum Mechanics (Dover, Illinois, 1999)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio Giardino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giardino, S. Quaternionic quantum harmonic oscillator. Eur. Phys. J. Plus 136, 120 (2021). https://doi.org/10.1140/epjp/s13360-021-01103-w

Download citation