Numerical study of high performance, low hysteresis, and stable perovskite solar cells with examining the optimized parameters

Abstract

A novel of quadruple-cation perovskite absorber has been studied. In this research, experimental current density–voltage (J-V) and external quantum efficiency (EQE) curves of a 20.56%-efficient perovskite solar cell were simulated by the device simulator entitled Solar Cell Capacitance Simulator (SCAPS). At first, uniform and single-graded models for band gap of the perovskite have been considered. The second model is closer to the experiment. Then, the efficiency of the solar cell was improved by studying the effects of electron and hole defect densities in the perovskite absorber and the effects of conduction and valence band offsets in both sides of perovskite absorber. Successively, the effects of doping concentration of hole and electron transport and the perovskite absorber layers, and finally the effects of capture cross section have been investigated. After optimizing the parameters, efficiency is reached to 29.07%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    M. Grätzel, The light and shade of perovskite solar cells. Nat. Mater. 13(9), 838–842 (2014)

    ADS  Article  Google Scholar 

  2. 2.

    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso- superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R.H. Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(1), 1–7 (2012)

    Google Scholar 

  4. 4.

    J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, Hj. Kim, A. Sarkar, Md.K. Nazeeruddin, M. Grätzel, S. II Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7(6), 486–491 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J.H. Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020)

    Article  Google Scholar 

  6. 6.

    S. Zhang, X. Pan, H. Jiao, W. Deng, J. Xu, Y. Chen, P.P. Altermatt, Z. Feng, P. Jacques, 335-W world-record p-type monocrystalline module with 20.6% efficient PERC solar cells. IEEE J. Photovoltaics 6(1), 145–152 (2015)

    Article  Google Scholar 

  7. 7.

    O.J. Usiobo, H. Kanda, P. Gratia, I. Zimmermann, T. Wirtz, M.K. Nazeeruddin, J.N. Audinot, Nanoscale Mass-Spectrometry Imaging of Grain Boundaries in Perovskite Semiconductors. J. Phys. Chem. C 124(42), 23230–23236 (2020)

    Article  Google Scholar 

  8. 8.

    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6% Phys. Status Solidi-Rapid Res. Lett. 10(8), 583–586 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH = NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014)

    Article  Google Scholar 

  10. 10.

    T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118(30), 16458–16462 (2014)

    Article  Google Scholar 

  11. 11.

    N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation Perovskite photovoltaics for enhanced solar-light harvesting. Angewantde chemie 126(12), 3215–3221 (2014)

    Article  Google Scholar 

  12. 12.

    F.C. Binek, P. Hanusch, T. Docampo, Bein, Stabilization of the trigonal high-temperature phase of formamidinium lead Iodide. J. Phys. Chem. Lett. 6(7), 1249–1253 (2015)

    Article  Google Scholar 

  13. 13.

    G.E. Eperon, D. Bryant, J. Troughton, S.D. Stranks, M.B. Johnston, T. Watson, D.A. Worsley, H.J. Snaith, Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite. J. Phys. Chem. Lett. 6(1), 129–138 (2015)

    Article  Google Scholar 

  14. 14.

    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014)

    Article  Google Scholar 

  15. 15.

    F. Ma, J. Li, W. Li, N. Lin, L. Wang, J. Qiao, Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chem. Sci. 8(1), 800–805 (2017)

    Article  Google Scholar 

  16. 16.

    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    X. Zheng, C. Wu, S.K. Jha, Z. Li, K. Zhu, S. Priya, Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1(5), 1014–1020 (2016)

    Article  Google Scholar 

  18. 18.

    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid state Alloys. Chem. Mater. 28(1), 284–292 (2016)

    Article  Google Scholar 

  20. 20.

    M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldtd, M. Grätzel, Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Article  Google Scholar 

  21. 21.

    J.W. Lee, J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho, N.G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015)

    Article  Google Scholar 

  22. 22.

    H. Tan, A. Jain, O. Voznyy, X. Lan, F. Pelayo, G. de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017)

    ADS  Article  Google Scholar 

  23. 23.

    O.A. Syzgantseva, M. Saliba, M. Grätzel, U. Rothlisberger, Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping. J. Phys. Chem. Lett. 8(6), 1191–1196 (2017)

    Article  Google Scholar 

  24. 24.

    M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K. Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014)

    Article  Google Scholar 

  26. 26.

    R.S. Sánchez, V. Gonzalez-Pedro, J.W. Lee, N.G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5(13), 2357–2363 (2014)

    Article  Google Scholar 

  27. 27.

    B. Wu, K. Fu, N. Yantara, G. Xing, S. Sun, T.C. Sum, N. Mathews, Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv. Energy Mater. 5(19), 1500829 (2015)

    Article  Google Scholar 

  28. 28.

    P.K. Levine, J.T.W. Nayak, N. Wang, S.V. Sakai, T.M. Reenen, S. Brenner, H.J. Mukhopadhyay, G. Snaith, D. Hodes, Cahen, Interface-dependent ion migration/accumulation controls hysteresis in MAPbI3 solar cells. J. Phys. Chem. C 120(30), 16399–16411 (2016)

    Article  Google Scholar 

  29. 29.

    Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016)

    Article  Google Scholar 

  30. 30.

    S. Meloni, T. Moehl, W. Tress, M. Franckevicius, M. Saliba, Y.H. Lee, P. Gao, M.K. Nazeeruddin, S.M. Zakeeruddin, U. Rothlisberger, M. Grätzel, Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7(1), 1–9 (2016)

    Article  Google Scholar 

  31. 31.

    Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5(1), 1–7 (2014)

    ADS  Google Scholar 

  32. 32.

    L. Cojocaru, S. Uchida, P.V.V. Jayaweera, S. Kaneko, J. Nakazaki, T. Kubo, H. Segawa, Origin of the hysteresis in I-V curves for planar structure perovskite solar cells rationalized with a surface boundary-induced capacitance model. Chem. Lett. 44(12), 1750–1752 (2015)

    Article  Google Scholar 

  33. 33.

    F. Huang, L. Jiang, A.R. Pascoe, Y. Yan, U. Bach, L. Spiccia, Y.B. Cheng, Fatigue behavior of planar CH3NH3PbI3 perovskite solar cells revealed by light on/off diurnal cycling. Nano Energy 27, 509–514 (2016)

    Article  Google Scholar 

  34. 34.

    M.A. Mahmud, T. Duong, Y. Yin, H.T. Pham, D. Walter, J. Peng, Y. Wu, L. Li, H. Shen, N. Wu, N. Mozaffari, G. Andersson, K.R. Catchpole, K.J. Weber, T.P. White, Double-Sided Surface Passivation of 3D Perovskite Film for High-Efficiency Mixed-Dimensional Perovskite Solar Cells. Adv. Funct. Mater. 30(7), 1907962 (2020)

    Article  Google Scholar 

  35. 35.

    S. Akin, N. Arora, S.M. Zakeeruddin, M. Grätzel, R.H. Friend, M.I. Dar, New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells. Adv. Energy Mater. 10(13), 1903090 (2020)

    ADS  Article  Google Scholar 

  36. 36.

    L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient Perovskite Solar Cells by Reducing Interface-Mediated Recombination: a Bulky Amine Approach. Adv. Energy Mater. 10(14), 2000197 (2020)

    Article  Google Scholar 

  37. 37.

    W.Q. Wu, P.N. Rudd, Z. Ni, C.H.V. Brackle, H. Wei, Q. Wang, B.R. Ecker, Y. Gao, J. Huang, Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells. J. Am. Chem. Soc. 142(8), 3989–3996 (2020)

    Article  Google Scholar 

  38. 38.

    H. Choi, K. Choi, Y. Choi, T. Kim, S. Lim, T. Park, A Review on Reducing Grain Boundaries and Morphological Improvement of Perovskite Solar Cells from Methodology and Material-Based Perspectives. Small Methods 4(5), 1900569 (2020)

    Article  Google Scholar 

  39. 39.

    F. Gao, Y. Zhao, X. Zhang, J. You, Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Adv. Energy Mater. 10(13), 1902650 (2020)

    Article  Google Scholar 

  40. 40.

    L.K. Ono, S. Liu, Y. Qi, Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells. Angew. Chem. Int. Ed. 59(17), 6676 (2020)

    Article  Google Scholar 

  41. 41.

    M. Burgelman, P. Nollet, S. Degrave, Modeling Polycrystalline Semiconductor Solar Cells. Thin Solid Films 361, 527–532 (2000)

    ADS  Article  Google Scholar 

  42. 42.

    T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.B. Cheng, J. Zhong, A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10(12), 2509–2515 (2017)

    Article  Google Scholar 

  43. 43.

    Z. Xua, S.H. Teoa, L. Gaob, Z. Guoa, Y. Kamataa, S. Hayasea, T. Maa, La-doped SnO2 as ETL for efficient planar-structure hybrid perovskite solar cells. Org. Electron. 73, 62–68 (2019)

    Article  Google Scholar 

  44. 44.

    P. Zhao, Z. Lin, J. Wang, M. Yue, J. Su, J. Zhang, J. Chang, Y. Hao, Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2(6), 4504–4512 (2019)

    Article  Google Scholar 

  45. 45.

    S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014)

    Article  Google Scholar 

  46. 46.

    T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Material. Sol. Cells 133, 8–14 (2015)

    Article  Google Scholar 

  47. 47.

    T. Minemotoa, Y. Kawanoa, T. Nishimurab, J. Chantana, Numerical reproduction of a perovskite solar cell by device simulation considering band gap grading. Opt. Mater. 92, 60–66 (2019)

    ADS  Article  Google Scholar 

  48. 48.

    M. Minbashi, A. Ghobadi, M.H. Ehsani, H.R. Dizaji, N. Memarian, Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 176, 520–525 (2018)

    ADS  Article  Google Scholar 

  49. 49.

    S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014)

    Article  Google Scholar 

  50. 50.

    S. Zahedi-Azad, M. Maiberg, R. Scheer, Effect of Na-PDT and KF-PDT on the photovoltaic performance of wide bandgap Cu (In, Ga) Se2 solar cells. Prog. Photovolt. Res. Appl. 28(11), 1146–1157 (2020)

    Article  Google Scholar 

  51. 51.

    T. Walter, R. Herberholz, C. Müller, H.W. Schock, Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J. Appl. Phys. 80(8), 4411–4420 (1996)

    ADS  Article  Google Scholar 

  52. 52.

    M. Burgelman, Mott-Schottky analysis from C-V simulations, and Admittance Analysis from C-f simulations in SCAPS. In: Dept. of Electronics and Information Technology (ELIS), University of Gent, Belgium. 1–23 (2017).

  53. 53.

    C.H. Ng, K. Hamada, G. Kapil, M.A. Kamarudin, Z. Wang, S. likubo, Q. Shen, K. Yoshino, T. Minemoto, S. Hayase, , Reducing traps density and carriers concentration by Ge additive for an efficient quasi 2D/3D perovskite solar cell. J. Mater. Chem. A 8(6), 2962–2968 (2020)

    Article  Google Scholar 

  54. 54.

    A. Daraie, A. Fattah, Performance improvement of perovskite heterojunction solar cell using grapheme. Opt. Mater. 109, 110254 (2020)

    Article  Google Scholar 

  55. 55.

    S. Jamal, A.D. Khan, A.D. Khan, High performance perovskite solar cell based on efficient materials for electron and hole transport layers. Optik 218, 164787 (2020)

    ADS  Article  Google Scholar 

  56. 56.

    B. Wang, J. Yang, L. Lu, W. Xiao, H. Wu, S. Xiong, J. Tang, C. Duan, Q. Bao, Interface engineering of air-stable n-doping fullerene- modified TiO2 electron transport layer for highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces 7(6), 1901964 (2020)

    Article  Google Scholar 

  57. 57.

    A.S. Shikoh, S. Paek, A.Y. Polyakov, N.B. Smirnov, I.V. Shchemerov, D.S. Saranin, S.I. Didenko, Z. Ahmad, F. Touati, M.K. Nazeeruddin, Assessing mobile ions contributions to admittance spectra and current-voltage characteristics of 3D and 2D/3D perovskite solar cells. Sol. Energy Mater. Sol. Cells 215, 110670 (2020)

    Article  Google Scholar 

  58. 58.

    M. Bruzzi, N. Falsini, N. Calisi, A. Vinattieri, Electrically active defects in polycrystalline and single crystal metal halide perovskite. Energies 13(7), 1643 (2020)

    Article  Google Scholar 

  59. 59.

    K.S. Nithya, K.S. Sudheer, Device modelling of non-fullerene organic solar cell with inorganic CuI hole transport layer using SCAPS 1-D. Optik 217, 164790 (2020)

    ADS  Article  Google Scholar 

  60. 60.

    M.S. Jamal, S.A. Shahahmadi, Md.A.A. Wadi, P. Chelvanathan, N. Asim, H. Misran, M.I. Hossain, N. Amin, K. Sopian, Md. Akhtaruzzaman, Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 182, 1204–1210 (2019)

    ADS  Article  Google Scholar 

  61. 61.

    S. Rai, B.K. Pandey, D.K. Dwivedi, Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation. Opt. Mater. 100, 109631 (2020)

    Article  Google Scholar 

  62. 62.

    R. Teimouri, Z. Heydari, M.P. Ghaziani, M. Madani, H. Abdy, M. Kolahdouz, E. Asl-Soleimani, Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell. Superlattices Microstruct. 145, 106627 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would desire to acknowledge Professor Marc Burgelman from the Department of Electronics and Information Systems, University of Gent for the development of the SCAPS software and permitting its use.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahmood Moradi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohandes, A., Moradi, M. & Nadgaran, H. Numerical study of high performance, low hysteresis, and stable perovskite solar cells with examining the optimized parameters. Eur. Phys. J. Plus 136, 113 (2021). https://doi.org/10.1140/epjp/s13360-021-01100-z

Download citation