Transitional description of mass spectra for baryons in the U(7) model

Abstract

In this study, we obtained mass spectra for baryons. The mass spectra for baryons depend on the spatial and internal symmetry Hamiltonian and wave functions. The algebraic solution for mass spectra of baryons is introduced in the spatial part. Results are obtained by using the Bethe Ansatz within an infinite-dimensional Lie algebra. The mass spectra for baryons are compared with the experimental data. The results show that the theory reproduces the experimental data quite well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

This manuscript has associated data in a data repository. [Author comment: All experimental data used in this manuscript was published by the Particle Data Group (https://pdg.lbl.gov/) [23].]

References

  1. 1.

    F. Iachello, Algebraic models of hadronic structure. Nucl. Phys. A 497, 23–42 (1989)

    ADS  Article  Google Scholar 

  2. 2.

    F. Iachello, D. Kusnezov, Test of O(4) symmetry in hadrons: radiative decays of mesons. Phys. Lett. B 255(4), 493–497 (1991)

    ADS  Article  Google Scholar 

  3. 3.

    F. Iachello, N.C. Mukhopadhyay, L. Zhang, Spectrum generating algebra for string-like hadrons. Mass formula for mesons. Phys. Lett. B 256(3–4), 295–300 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    R. Bijker, F. Iachello, A. Leviatan, Algebraic models of hadron structure. I. Nonstrange baryons. Ann. Phys. 236(1), 69–116 (1994)

    ADS  Article  Google Scholar 

  5. 5.

    R. Bijker, F. Iachello, A. Leviatan, Electromagnetic form factors in a collective model of the nucleon. Phys. Rev. C 54(4), 1935 (1996)

    ADS  Article  Google Scholar 

  6. 6.

    R. Bijker, F. Iachello, A. Leviatan, Strong decays of nonstrange q 3 baryons. Phys. Rev. D 55(5), 2862 (1997)

    ADS  Article  Google Scholar 

  7. 7.

    R. Bijker, F. Iachello, A. Leviatan, Algebraic models of hadron structure: II. Strange baryons. Ann. Phys. 284(1), 89–133 (2000)

    ADS  Article  Google Scholar 

  8. 8.

    R. Bijker, A. Leviatan, Algebraic model of an oblate top, in Symmetries in Science IX, ed. by B. Gruber, M. Ramek (Springer, Boston, 1997), pp. 9–24

    Google Scholar 

  9. 9.

    R. Bijker, A. Leviatan, AU(7) model for collective excitations of baryons. Rev. Mex. de Física 39(Suplemento 2), 7–20 (1993)

    Google Scholar 

  10. 10.

    S. Okubo, Note on unitary symmetry in strong interactions. Progress Theoret. Phys. 27(5), 949–966 (1962)

    ADS  Article  MATH  Google Scholar 

  11. 11.

    E. Santopinto, R. Bijker, F. Iachello, Transformation brackets between \( U(\nu + 1) U(\nu ) SO(\nu ) \) and \( U(\nu + 1) SO(\nu + 1) SO(\nu ) \). J. Math. Phys. 37(6), 2674–2681 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    N. Isgur, G. Karl, P-wave baryons in the quark model. Phys. Rev. D 18(11), 4187 (1978)

    ADS  Article  Google Scholar 

  13. 13.

    K.T. Chao, N. Isgur, G. Karl, Strangeness-2 and-3 baryons in a quark model with chromodynamics. Phys. Rev. D 23(1), 155 (1981)

    ADS  Article  Google Scholar 

  14. 14.

    S. Capstick, N. Isgur, Baryons in a relativized quark model with chromodynamics. Phys. Rev. D 34(9), 2809 (1986)

    ADS  Article  Google Scholar 

  15. 15.

    F. Pan, Y. Zhang, H.C. Xu, L.R. Dai, J.P. Draayer, Alternative solvable description of the E (5) critical point symmetry in the interacting Boson model. Phys. Rev. C 91(3), 034305 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    F. Pan, J.P. Draayer, New algebraic solutions for \( SO (6)\leftrightarrow U (5) \) transitional nuclei in the interacting boson model. Nucl. Phys. A 636(2), 156–168 (1998)

    ADS  Article  Google Scholar 

  17. 17.

    F. Pan, X. Zhang, J.P. Draayer, Algebraic solutions of an sl-boson system in the \( U (2l+ 1)\leftrightarrow O (2l+ 2) \) transitional region. J. Phys. A Math. Gen. 35(33), 7173 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    P. Kramer, M. Moshinsky, Group theory of harmonic oscillators (III). States with permutational symmetry. Nucl. Phys. 82(2), 241–274 (1966)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    M. Moshinsky, The harmonic oscillator in modern physics: from atoms to quarks. New York, NY: Gordon and Breach (1969)

  20. 20.

    M.A. Caprio, J.H. Skrabacz, F. Iachello, Dual algebraic structures for the two-level pairing model. J. Phys. A Math. Theor. 44(7), 075303 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    F. Gürsey, L.A. Radicati, Spin and unitary spin independence of strong interactions. Phys. Rev. Lett. 13(5), 173 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    E.J. Squires, On the continuation of partial-wave amplitudes to complex l. Il Nuovo Cim. (1955–1965) 25(2), 242–253 (1962)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Particle Data Group, Review of particle physics. Eur. Phys. J. C Particles Fields 3(1–4), 1–783 (1998)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ghapanvari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amiri, N., Ghapanvari, M. & Jafarizadeh, M.A. Transitional description of mass spectra for baryons in the U(7) model. Eur. Phys. J. Plus 136, 141 (2021). https://doi.org/10.1140/epjp/s13360-021-01079-7

Download citation