Abstract
We study the net-baryon production at forward rapidities within the Color Glass Condensate paradigm. At high energy regime, the leading baryon production mechanism is shown to change from recombination to independent fragmentation. The nuclear configurational entropy (NCE) constructed upon forward scattering amplitudes allows to predict the two free parameters that govern the anomalous dimension of the target gluon distribution. The global minimum of the NCE indicates a point of stability in pp/pA/AA collisions at LHC energies, corroborating and matching RHIC data for hadron spectra measured in pp and dAu collisions at RHIC energies, with accuracy between 1.2 and 1.8%, respectively, for the two free parameters.
This is a preview of subscription content, access via your institution.


References
- 1.
G.S. Karapetyan, Phys. Lett. B 786, 418 (2018). arXiv:1807.04540 [nucl-th]
- 2.
G.S. Karapetyan, Phys. Lett. B 781, 201 (2018). arXiv:1802.09105 [hep-ph]
- 3.
G.S. Karapetyan, EPL 129, 18002 (2020). arXiv:1912.10071 [hep-ph]
- 4.
L.F. Ferreira, R. da Rocha, Phys. Rev. D 99, 086001 (2019). arXiv:1902.04534 [hep-th]
- 5.
A.E. Bernardini, R. da Rocha, Phys. Rev. D 98, 126011 (2018). arXiv:1809.10055 [hep-th]
- 6.
N.R.F. Braga, L.F. Ferreira, R. da Rocha, Phys. Lett. B 787, 16 (2018). arXiv:1808.10499 [hep-ph]
- 7.
A.E. Bernardini, R. da Rocha, Phys. Lett. B 762, 107 (2016). arXiv:1605.00294 [hep-th]
- 8.
N. Barbosa-Cendejas, R. Cartas-Fuentevilla, A. Herrera-Aguilar, R.R. Mora-Luna, R. da Rocha, Phys. Lett. B 782, 607 (2018). arXiv:1805.04485 [hep-th]
- 9.
L.F. Ferreira, R. da Rocha, Eur. Phys. J. C 80, 375 (2020). arXiv:1907.11809 [hep-th]
- 10.
A.E. Bernardini, N.R.F. Braga, R. da Rocha, Phys. Lett. B 765, 81 (2017). arXiv:1609.01258 [hep-th]
- 11.
N.R.F. Braga, R. da Rocha, Phys. Lett. B 776, 78 (2018). arXiv:1710.07383 [hep-th]
- 12.
A. Goncalves da Silva, R. da Rocha, Phys. Lett. B 774, 98 (2017). arXiv:1706.01482 [hep-th]
- 13.
P. Colangelo, F. Loparco, Phys. Lett. B 788, 500 (2019). arXiv:1811.05272 [hep-ph]
- 14.
C.W. Ma, Y.G. Ma, Prog. Part. Nucl. Phys. 99, 120 (2018). arXiv:1801.02192 [nucl-th]
- 15.
M. Gleiser, N. Stamatopoulos, Phys. Rev. D 86, 045004 (2012). arXiv:1205.3061 [hep-th]
- 16.
M. Gleiser, N. Stamatopoulos, Phys. Lett. B 713, 304 (2012)
- 17.
M. Gleiser, D. Sowinski, Phys. Lett. B 727, 272 (2013). arXiv:1307.0530 [hep-th]
- 18.
M. Gleiser, M. Stephens, D. Sowinski, Phys. Rev. D 97, 096007 (2018). arXiv:1803.08550 [hep-th]
- 19.
M. Gleiser, D. Sowinski, Phys. Lett. B 747, 125 (2015). arXiv:1501.06800 [hep-th]
- 20.
M. Gleiser, N. Graham, Phys. Rev. D 89, 083502 (2014). arXiv:1401.6225 [hep-th]
- 21.
M. Gleiser, N. Jiang, Phys. Rev. D 92, 044046 (2015). arXiv:1506.05722 hep-th]
- 22.
R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016). arXiv:1610.01572 [hep-th]
- 23.
A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Phys. Lett. B 791, 323 (2019). arXiv:1901.07492 [hep-th]
- 24.
N.R.F. Braga, R. da Rocha, Phys. Lett. B 767, 386 (2017). arXiv:1612.03289 [hep-th]
- 25.
A.E. Bernardini, R. da Rocha, Phys. Lett. B 796, 107 (2019). arXiv:1908.04095 [gr-qc]
- 26.
N.R.F. Braga, R. da Mata, Phys. Rev. D 101, 105016 (2020). arXiv:2002.09413 [hep-th]
- 27.
A. Alves, A.G. Dias, R. Silva, Braz. J. Phys. 47, 426 (2017). arXiv:1703.02061 [hep-ph]
- 28.
A. Alves, A.G. Dias, R. da Silva, Physica A 420, 1 (2015). arXiv:1408.0827 [hep-ph]
- 29.
D. Bazeia, D.C. Moreira, E.I.B. Rodrigues, J. Magn. Magn. Mater. 475, 734 (2019). arXiv:1812.04950 [cond-mat.mes-hall]
- 30.
G.S. Karapetyan, EPL 125, 58001 (2019). arXiv:1901.05349 [hep-ph]
- 31.
G.S. Karapetyan, EPL 118, 38001 (2017). arXiv:1705.1061 [hep-ph]
- 32.
G.S. Karapetyan, EPL 117, 18001 (2017). arXiv:1612.09564 [hep-ph]
- 33.
C.O. Lee, Phys. Lett. B 772, 471 (2017). arXiv:1705.09047 [gr-qc]
- 34.
F.O. Duraes et al., Phys. Rev. C 89, 035205 (2014). arXiv:1401.7888 [hep-ph]
- 35.
D. Boer, A. Utermann, E. Wessels, Phys. Rev. D 77, 054014 (2008)
- 36.
D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 747, 609 (2005)
- 37.
I.G. Bearden, et al. [BRAHMS Collaboration], Phys. Rev. Lett. 93, 102301 (2004)
- 38.
I.C. Arsene, et al. [BRAHMS Collaboration], Phys. Lett. B 677, 267 (2009) arXiv:0901.0872 [nucl-ex]
- 39.
R. Debbe [BRAHMS Collaboration], J. Phys. G 35, 104004 (2008) arXiv:0805.0780 [nucl-ex]
- 40.
K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017 (1999)
- 41.
B.A. Kniehl, G. Kramer, B. Pötter, Nucl. Phys. B 582, 514 (2000)
- 42.
K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017 (1999)
- 43.
R. da Rocha, W.A. Rodrigues Jr., Mod. Phys. Lett. A 21, 65 (2006)
- 44.
R. da Rocha, L. Fabbri, J.M. Hoff da Silva, R.T. Cavalcanti, J.A. Silva-Neto, J. Math. Phys. 54, 102505 (2013). arXiv:1302.2262 [gr-qc]
- 45.
R.A.C. Correa, D.M. Dantas, C.A.S. Almeida, R. da Rocha, Phys. Lett. B 755, 358 (2016). arXiv:1601.00076 [hep-th]
- 46.
D. Bazeia, R. Menezes, R. da Rocha, Adv. High Energy Phys. 2014, 276729 (2014). arXiv:1312.3864 [hep-th]
Acknowledgements
GK thanks to FAPESP (Grant No. 2018/19943-6), for partial financial support.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karapetyan, G. Baryon production probability via the nuclear configurational entropy. Eur. Phys. J. Plus 136, 122 (2021). https://doi.org/10.1140/epjp/s13360-021-01076-w
Received:
Accepted:
Published: