Baryon production probability via the nuclear configurational entropy

Abstract

We study the net-baryon production at forward rapidities within the Color Glass Condensate paradigm. At high energy regime, the leading baryon production mechanism is shown to change from recombination to independent fragmentation. The nuclear configurational entropy (NCE) constructed upon forward scattering amplitudes allows to predict the two free parameters that govern the anomalous dimension of the target gluon distribution. The global minimum of the NCE indicates a point of stability in pp/pA/AA collisions at LHC energies, corroborating and matching RHIC data for hadron spectra measured in pp and dAu collisions at RHIC energies, with accuracy between 1.2 and 1.8%, respectively, for the two free parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    G.S. Karapetyan, Phys. Lett. B 786, 418 (2018). arXiv:1807.04540 [nucl-th]

    ADS  Article  Google Scholar 

  2. 2.

    G.S. Karapetyan, Phys. Lett. B 781, 201 (2018). arXiv:1802.09105 [hep-ph]

    ADS  Article  Google Scholar 

  3. 3.

    G.S. Karapetyan, EPL 129, 18002 (2020). arXiv:1912.10071 [hep-ph]

    ADS  Article  Google Scholar 

  4. 4.

    L.F. Ferreira, R. da Rocha, Phys. Rev. D 99, 086001 (2019). arXiv:1902.04534 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    A.E. Bernardini, R. da Rocha, Phys. Rev. D 98, 126011 (2018). arXiv:1809.10055 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    N.R.F. Braga, L.F. Ferreira, R. da Rocha, Phys. Lett. B 787, 16 (2018). arXiv:1808.10499 [hep-ph]

    ADS  Article  Google Scholar 

  7. 7.

    A.E. Bernardini, R. da Rocha, Phys. Lett. B 762, 107 (2016). arXiv:1605.00294 [hep-th]

    ADS  Article  Google Scholar 

  8. 8.

    N. Barbosa-Cendejas, R. Cartas-Fuentevilla, A. Herrera-Aguilar, R.R. Mora-Luna, R. da Rocha, Phys. Lett. B 782, 607 (2018). arXiv:1805.04485 [hep-th]

    ADS  Article  Google Scholar 

  9. 9.

    L.F. Ferreira, R. da Rocha, Eur. Phys. J. C 80, 375 (2020). arXiv:1907.11809 [hep-th]

    ADS  Article  Google Scholar 

  10. 10.

    A.E. Bernardini, N.R.F. Braga, R. da Rocha, Phys. Lett. B 765, 81 (2017). arXiv:1609.01258 [hep-th]

    ADS  Article  Google Scholar 

  11. 11.

    N.R.F. Braga, R. da Rocha, Phys. Lett. B 776, 78 (2018). arXiv:1710.07383 [hep-th]

    ADS  Article  Google Scholar 

  12. 12.

    A. Goncalves da Silva, R. da Rocha, Phys. Lett. B 774, 98 (2017). arXiv:1706.01482 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    P. Colangelo, F. Loparco, Phys. Lett. B 788, 500 (2019). arXiv:1811.05272 [hep-ph]

    ADS  Article  Google Scholar 

  14. 14.

    C.W. Ma, Y.G. Ma, Prog. Part. Nucl. Phys. 99, 120 (2018). arXiv:1801.02192 [nucl-th]

    ADS  Article  Google Scholar 

  15. 15.

    M. Gleiser, N. Stamatopoulos, Phys. Rev. D 86, 045004 (2012). arXiv:1205.3061 [hep-th]

    ADS  Article  Google Scholar 

  16. 16.

    M. Gleiser, N. Stamatopoulos, Phys. Lett. B 713, 304 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    M. Gleiser, D. Sowinski, Phys. Lett. B 727, 272 (2013). arXiv:1307.0530 [hep-th]

    ADS  Article  Google Scholar 

  18. 18.

    M. Gleiser, M. Stephens, D. Sowinski, Phys. Rev. D 97, 096007 (2018). arXiv:1803.08550 [hep-th]

    ADS  Article  Google Scholar 

  19. 19.

    M. Gleiser, D. Sowinski, Phys. Lett. B 747, 125 (2015). arXiv:1501.06800 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    M. Gleiser, N. Graham, Phys. Rev. D 89, 083502 (2014). arXiv:1401.6225 [hep-th]

    ADS  Article  Google Scholar 

  21. 21.

    M. Gleiser, N. Jiang, Phys. Rev. D 92, 044046 (2015). arXiv:1506.05722 hep-th]

    ADS  Article  Google Scholar 

  22. 22.

    R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016). arXiv:1610.01572 [hep-th]

    ADS  Article  Google Scholar 

  23. 23.

    A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Phys. Lett. B 791, 323 (2019). arXiv:1901.07492 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    N.R.F. Braga, R. da Rocha, Phys. Lett. B 767, 386 (2017). arXiv:1612.03289 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    A.E. Bernardini, R. da Rocha, Phys. Lett. B 796, 107 (2019). arXiv:1908.04095 [gr-qc]

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    N.R.F. Braga, R. da Mata, Phys. Rev. D 101, 105016 (2020). arXiv:2002.09413 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    A. Alves, A.G. Dias, R. Silva, Braz. J. Phys. 47, 426 (2017). arXiv:1703.02061 [hep-ph]

    ADS  Article  Google Scholar 

  28. 28.

    A. Alves, A.G. Dias, R. da Silva, Physica A 420, 1 (2015). arXiv:1408.0827 [hep-ph]

    ADS  Article  Google Scholar 

  29. 29.

    D. Bazeia, D.C. Moreira, E.I.B. Rodrigues, J. Magn. Magn. Mater. 475, 734 (2019). arXiv:1812.04950 [cond-mat.mes-hall]

    ADS  Article  Google Scholar 

  30. 30.

    G.S. Karapetyan, EPL 125, 58001 (2019). arXiv:1901.05349 [hep-ph]

    ADS  Article  Google Scholar 

  31. 31.

    G.S. Karapetyan, EPL 118, 38001 (2017). arXiv:1705.1061 [hep-ph]

    ADS  Article  Google Scholar 

  32. 32.

    G.S. Karapetyan, EPL 117, 18001 (2017). arXiv:1612.09564 [hep-ph]

    ADS  Article  Google Scholar 

  33. 33.

    C.O. Lee, Phys. Lett. B 772, 471 (2017). arXiv:1705.09047 [gr-qc]

    ADS  Article  Google Scholar 

  34. 34.

    F.O. Duraes et al., Phys. Rev. C 89, 035205 (2014). arXiv:1401.7888 [hep-ph]

    ADS  Article  Google Scholar 

  35. 35.

    D. Boer, A. Utermann, E. Wessels, Phys. Rev. D 77, 054014 (2008)

    ADS  Article  Google Scholar 

  36. 36.

    D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 747, 609 (2005)

    ADS  Article  Google Scholar 

  37. 37.

    I.G. Bearden, et al. [BRAHMS Collaboration], Phys. Rev. Lett. 93, 102301 (2004)

  38. 38.

    I.C. Arsene, et al. [BRAHMS Collaboration], Phys. Lett. B 677, 267 (2009) arXiv:0901.0872 [nucl-ex]

  39. 39.

    R. Debbe [BRAHMS Collaboration], J. Phys. G 35, 104004 (2008) arXiv:0805.0780 [nucl-ex]

  40. 40.

    K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017 (1999)

    ADS  Article  Google Scholar 

  41. 41.

    B.A. Kniehl, G. Kramer, B. Pötter, Nucl. Phys. B 582, 514 (2000)

    ADS  Article  Google Scholar 

  42. 42.

    K. Golec-Biernat, M. Wusthoff, Phys. Rev. D 59, 014017 (1999)

    ADS  Article  Google Scholar 

  43. 43.

    R. da Rocha, W.A. Rodrigues Jr., Mod. Phys. Lett. A 21, 65 (2006)

    ADS  Article  Google Scholar 

  44. 44.

    R. da Rocha, L. Fabbri, J.M. Hoff da Silva, R.T. Cavalcanti, J.A. Silva-Neto, J. Math. Phys. 54, 102505 (2013). arXiv:1302.2262 [gr-qc]

    ADS  MathSciNet  Article  Google Scholar 

  45. 45.

    R.A.C. Correa, D.M. Dantas, C.A.S. Almeida, R. da Rocha, Phys. Lett. B 755, 358 (2016). arXiv:1601.00076 [hep-th]

    ADS  Article  Google Scholar 

  46. 46.

    D. Bazeia, R. Menezes, R. da Rocha, Adv. High Energy Phys. 2014, 276729 (2014). arXiv:1312.3864 [hep-th]

    Article  Google Scholar 

Download references

Acknowledgements

GK thanks to FAPESP (Grant No. 2018/19943-6), for partial financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Karapetyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karapetyan, G. Baryon production probability via the nuclear configurational entropy. Eur. Phys. J. Plus 136, 122 (2021). https://doi.org/10.1140/epjp/s13360-021-01076-w

Download citation