Extreme acoustic anisotropy in crystals visualized by diffraction tensor

Abstract

Anisotropic acoustic wave propagation in single crystals is a fundamental phenomenon enabling operation of various acoustic, acousto-electronic and acousto-optic devices. It provides a variety of device performances and application fields, but its role in pre-estimation of achievable device characteristics and location of crystal orientations with desired properties is often underestimated. A geometrical image of acoustic anisotropy can be an important tool in design of devices based on wave propagation in single crystals or combinations of anisotropic materials. We propose a fast and robust method for survey and visualization of acoustic anisotropy based on calculation of the eigenvalues of bulk acoustic wave (BAW) diffraction tensor (curvature of the slowness surface). The stereographic projection of these eigenvalues clearly reveals singular directions of BAW propagation (conical acoustic axes) in anisotropic media and areas with large and small BAW beam divergence. The method is illustrated by application to three crystals of different symmetry used in different types of acoustic devices: paratellurite, lithium niobate and potassium gadolinium tungstate. The specific features of acoustic anisotropy are discussed for each crystal in terms of their potential application in devices. In addition, we demonstrate that visualization of acoustic anisotropy of lithium niobate helps to find orientations supporting propagation of high-velocity surface acoustic waves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    F.I. Fedorov (ed.), Theory of Elastic Waves in Crystals (Plenum Press, New York, 1968)

    Google Scholar 

  2. 2.

    M.J.P. Musgrave, Crystal Acoustics (Acoustical Society of America, 2003), ISBN 978-0-974-40670-1

  3. 3.

    A.G. Khatkevich, Sov. Phys. Crystallogr. 22, 701 (1977)

    Google Scholar 

  4. 4.

    V. Alshits, J. Lothe, Sov. Phys. Crystallogr. 24, 393 (1979)

  5. 5.

    V.I. Alshits, V.N. Lyubimov, A.L. Shuvalov, Sov. Phys. Crystallogr. 33, 1 (1987)

    Google Scholar 

  6. 6.

    A.L. Shuvalov, A.G. Every, Phys. Rev. B 53, 14906 (1996)

    ADS  Article  Google Scholar 

  7. 7.

    A.L. Shuvalov, A.G. Every, J. Acoust. Soc. Am. 101, 2381 (1997)

    ADS  Article  Google Scholar 

  8. 8.

    A.L. Shuvalov, Proc. R. Soc. Lond. A 454, 2911 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    P. Boulanger, M. Hayes, Proc. R. Soc. Lond. A 454, 2323 (1998)

    ADS  Article  Google Scholar 

  10. 10.

    V.I. Alshits, J. Lothe, Wave Motion 40, 297 (2004)

  11. 11.

    V. Vavrycuk, J. Acoust. Soc. Am. 118, 647 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    V.I. Alshits, J. Lothe, Wave Motion 43, 177 (2006)

    MathSciNet  Article  Google Scholar 

  13. 13.

    V.A. Burov, V.B. Voloshinov, K.V. Dmitriev, N.V. Polikarpova, Phys. Usp. 54, 1165 (2011)

    ADS  Article  Google Scholar 

  14. 14.

    A. Goutzoulis, D. Pape (eds.), Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, New York, 1994). ISBN 0-8247-8930-X

  15. 15.

    J. Kusters, D. Wilson, D. Hammond, J. Opt. Soc. Am. 64, 434 (1974)

    ADS  Article  Google Scholar 

  16. 16.

    V.B. Voloshinov, D.D. Mishin, V.Ya. Molchanov, V.N. Parygin, V.S. Toupitza, Sov. Tech. Phys. Lett. 18, 33 (1992)

    Google Scholar 

  17. 17.

    J.-C. Kastelik, M.G. Gazalet, C. Bruneel, E. Bridoux, J. Appl. Phys. 74, 2813 (1993)

    ADS  Article  Google Scholar 

  18. 18.

    G. Aubin, J. Sapriel, V.Ya. Molchanov, R. Gabet, P. Grosso, S. Gosselin, Y. Jaouen, Electron. Lett. 40, 448 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    V.Ya. Molchanov, V.B. Voloshinov, O.Yu. Makarov, Quantum Electron. 39, 353 (2009)

  20. 20.

    V.I. Balakshy, S.N. Mantsevich, Acoust. Phys. 58, 549 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    S.N. Mantsevich, V.I. Balakshy, V.Ya. Molchanov, K.B. Yushkov, Ultrasonics 63, 39 (2015)

    Article  Google Scholar 

  22. 22.

    S.N. Mantsevich, V.Ya. Molchanov, K.B. Yushkov, V.S. Khorkin, M.I. Kupreychik, Ultrasonics 78, 175 (2017)

    Article  Google Scholar 

  23. 23.

    M.M. Mazur, D.Yu. Velikovskiy, L.I. Mazur, A.A. Pavluk, V.E. Pozhar, V.I. Pustovoit, Ultrasonics 54, 1311 (2014)

  24. 24.

    M.M. Mazur, L.I. Mazur, V.E. Pozhar, Tech. Phys. Lett. 41, 249–251 (2015)

    ADS  Article  Google Scholar 

  25. 25.

    I. Martynyuk-Lototska, I. Trach, O. Kokhan, R. Vlokh, Appl. Opt. 56, 3179 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    M.G. Milkov, V.B. Voloshinov, L.I. Isaenko, V.N. Vedenyapin, Mosc. Univ. Phys. Bull. 72, 83 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    M.I. Kupreychik, V.I. Balakshy, Appl. Opt. 57, 5549 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    K. Yushkov, A. Chizhikov, N. Naumenko, V. Molchanov, A. Pavlyuk, E. Makarevskaya, N. Zakharov, Proc. SPIE 10899, 1089913 (2019)

    Google Scholar 

  29. 29.

    S. Valle, K.C. Balram, Opt. Lett. 44, 3777 (2019)

  30. 30.

    L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, G. Piazza, Photon. Res. 7, 1003 (2019)

    Article  Google Scholar 

  31. 31.

    H. Tian, J. Liu, B. Dong, J.C. Skehan, M. Zervas, T.J. Kippenberg, S.A. Bhave, Nat. Commun. 11, 3073 (2020)

    ADS  Article  Google Scholar 

  32. 32.

    N. Naumenko, P. Nicolay, Appl. Phys. Lett. 111, 073507 (2017)

    ADS  Article  Google Scholar 

  33. 33.

    N.F. Naumenko, Ultrasonics 88, 115 (2018)

    Article  Google Scholar 

  34. 34.

    N.F. Naumenko, Kristallografiya 37, 427 (1992)

    Google Scholar 

  35. 35.

    N.F. Naumenko, Phys. Lett. A 195, 258 (1994)

    ADS  Article  Google Scholar 

  36. 36.

    V. Alshits, J. Lothe, Sov. Phys. Crystallogr. 24, 644 (1979)

  37. 36.

    N. Naumenko, A method of search for leaky waves based on exceptional wave theory, in Proceedings of the 1995 IEEE Ultrasonics Symposium (IEEE, Seattle, WA, USA, 1995), pp. 273–276

  38. 37.

    V. Alshits, V. Lyubimov, N. Naumenko, N. Perelomova, A. Shuvalov, Sov. Phys. Crystallogr. 30, 123 (1985)

    Google Scholar 

  39. 38.

    N. Naumenko, J. Appl. Phys. 79, 8936 (1996)

    ADS  Article  Google Scholar 

  40. 39.

    V.I. Alshits, V.N. Lyubimov, Phys. Usp. 56, 1021 (2013)

    ADS  Article  Google Scholar 

  41. 40.

    Y.K. Ahn, H.J. Lee, Y.Y. Kim, Sci. Rep. 7, 10072 (2017)

    ADS  Article  Google Scholar 

  42. 41.

    N. Naumenko, S. Chizhikov, V. Molchanov, K. Yushkov, Anisotropic diffraction of acoustic waves in crystals used in acousto-optic dispersive delay lines, in 2013 Joint UFFC, EFTF and PFM Symposium, 2013 IUS Proceedings (Prague, IEEE, 2013), pp. 500–503

  43. 42.

    N.F. Naumenko, V.Ya. Molchanov, S.I. Chizhikov, K.B. Yushkov, Ultrasonics 63, 126 (2015)

    Article  Google Scholar 

  44. 43.

    A.G. Khatkevich, Sov. Phys. Acoust. 24, 108 (1978)

    Google Scholar 

  45. 44.

    N.F. Naumenko, N.V. Perelomova, V.S. Bondarenko, Sov. Phys. Crystallogr. 28, 607 (1983)

    Google Scholar 

  46. 45.

    I.M. Silvestrova, YuV Pisarevskii, P.A. Senyushenkov, A.I. Krupny, R. Voszka, I. Földvári, J. Janszky, Phys. Status Solidi A Appl. Mat. 101, 437 (1987)

    ADS  Article  Google Scholar 

  47. 46.

    N. Uchida, Y. Ohmachi, J. Appl. Phys. 40, 4692 (1969)

    ADS  Article  Google Scholar 

  48. 47.

    H. Ledbetter, R.G. Leisure, A. Migliori, J. Betts, H. Ogi, J. Appl. Phys. 96, 6201 (2004)

    ADS  Article  Google Scholar 

  49. 48.

    N. Naumenko, V. Bondarenko, N. Perelomova, Sov. Phys. Solid State 25, 1512 (1983)

    Google Scholar 

  50. 49.

    J. Kushibiki, I. Takanaga, M. Arakawa, T. Sannomiya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1315 (1999)

    Article  Google Scholar 

  51. 50.

    A. Hagelauer, G. Fattinger, C.C.W. Ruppel, M. Ueda, K. Hashimoto, A. Tag, IEEE Trans. Microw. Theory Technol. 66, 4548 (2018)

    ADS  Article  Google Scholar 

  52. 51.

    H.K. Sahoo, L. Ottaviano, Y. Zheng, J. Vac. Sci. Technol. B 36, 011202 (2018)

    Article  Google Scholar 

  53. 52.

    N.F. Naumenko, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 1485 (2020)

    Article  Google Scholar 

  54. 53.

    N.F. Naumenko, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 1909 (2020)

    Article  Google Scholar 

  55. 54.

    N. Naumenko, Leaky surface acoustic wave with velocity 10 km/s and suppressed leakage in LiNbO3 plate bonded to sapphire, in Proceedings 2020 IEEE International Ultrasonics Symposium (IEEE, Las Vegas, NV, USA, 2020)

  56. 55.

    N.F. Naumenko, B.P. Abbott, Optimal orientations oflithium niobate for resonator SAW filters, in Proceedings of the 2003 IEEE Symposium on Ultrasonics (IEEE, Honolulu, HI, USA, 2003)

  57. 56.

    N. Naumenko, B. Abbott, Transverse acoustic anisotropy of obliquely propagating LSAW in resonator structures on \(\text{LiTaO}_3\) and \(\text{ LiNbO}_3\) substrates, in Proceedings of the 2004 IEEE Ultrasonics Symposium (IEEE, Montreal, Canada, 2004), pp. 1561–1564

Download references

Acknowledgements

The research was supported by the Ministry of Science and Higher Education of the Russian Federation (Project 02.A03.21.0004/Grant K2-2017-079) and the Russian Foundation for Basic Research (Project 17-07-00279).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Konstantin B. Yushkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naumenko, N.F., Yushkov, K.B. & Molchanov, V.Y. Extreme acoustic anisotropy in crystals visualized by diffraction tensor. Eur. Phys. J. Plus 136, 95 (2021). https://doi.org/10.1140/epjp/s13360-021-01072-0

Download citation