T-matrix calculations of spin-dependent optical forces in optically trapped nanowires

Abstract

We present computational results associated with the onset of a spin-dependent optical force component occurring on zinc oxide nanowires trapped in optical tweezers with circularly polarized light. This type of non-conservative force appears directed perpendicularly with respect to the propagation direction of the incident light on the nanowires both for plane wave illumination and for optical tweezers. We show how this transverse optical force component is also shape dependent and connected with the imaginary part of the local Poynting vector and the local spin density.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J.D. Jackson, Classical Electrodynamics (Wiley, Hoboken, 2012)

    Google Scholar 

  2. 2.

    K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys. 15(3), 033026 (2013)

    ADS  MATH  Article  Google Scholar 

  3. 3.

    M.I. Marqués, J.J. Sáenz, Reply to comment on scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 111(5), 059302 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    K.Y. Bliokh, A.Y. Bekshae, F. Nori, Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    S.B. Wang, C.T. Chan, Lateral optical force on chiral particles near a surface. Nat. Commun. 5(1), 1–8 (2014)

    ADS  Google Scholar 

  6. 6.

    M.I. Marqués, Beam configuration proposal to verify that scattering forces come from the orbital part of the poynting vector. Opt. Lett. 39(17), 5122–5125 (2014)

    ADS  Article  Google Scholar 

  7. 7.

    S. Sukhov, V. Kajorndejnukul, J. Broky, A. Dogariu, Forces in aharonov-bohm optical setting. Optica 1(6), 383–387 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    K.Y. Bliokh, F.J. Rodríguez-Fortuño, F. Nori, A.V. Zayats, Spin-orbit interactions of light. Nat. Photonics 9(12), 796 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    A.Y. Bekshaev, K.Y. Bliokh, F. Nori, Transverse spin and momentum in two-wave interference. Phys. Rev. X 5(1), 011039 (2015)

    Google Scholar 

  10. 10.

    A. Hayat, J.P.B. Mueller, F. Capasso, Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci. 112(43), 13190–13194 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    M. Neugebauer, T. Bauer, A. Aiello, P. Banzer, Measuring the transverse spin density of light. Phys. Rev. Lett. 114(6), 063901 (2015)

    ADS  Article  Google Scholar 

  12. 12.

    M. Antognozzi, C.R. Bermingham, R.L. Harniman, S. Simpson, J. Senior, R. Hayward, H. Hoerber, M.R. Dennis, A.Y. Bekshaev, K.Y. Bliokh et al., Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 12(8), 731 (2016)

    Article  Google Scholar 

  13. 13.

    S. Fardad, A. Salandrino, A. Samadi, M. Heinrich, Z. Chen, D.N. Christodoulides, Scattering detection of a solenoidal poynting vector field. Opt. Lett. 41(15), 3615–3618 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    G. Pellegrini, M. Finazzi, M. Celebrano, L. Duo, M.A. Iati, O.M. Marago, P. Biagioni, Superchiral surface waves for all-optical enantiomer separation. J. Phys. Chem. C 123(46), 28336–28342 (2019)

    Article  Google Scholar 

  15. 15.

    N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Field (Interscience Publisher, New York, USA, 1959)

    Google Scholar 

  16. 16.

    D.L. Landau, E.M. Lifsits, Teoria Dei Campi (Editori Riuniti, Roma, IT, 1976)

    Google Scholar 

  17. 17.

    E. Noether, Invariant variation problems. Transp. Theory Stat. Phys. 1(3), 186–207 (1971)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    F.J. Belinfante, On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7(5), 449–474 (1940)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    H.C. Ohanian, What is spin? Am. J. Phys. 54(6), 500–505 (1986)

    ADS  Article  Google Scholar 

  20. 20.

    L. Liu, A. Di Donato, V. Ginis, S. Kheifets, A. Amirzhan, F. Capasso, Three-dimensional measurement of the helicity-dependent forces on a mie particle. Phys. Rev. Lett. 120(22), 223901 (2018)

    ADS  Article  Google Scholar 

  21. 21.

    V. Ginis, L. Liu, A. She, F. Capasso, Using the belinfante momentum to retrieve the polarization state of light inside waveguides. Sci. Rep. 9(1), 1–6 (2019)

    Article  Google Scholar 

  22. 22.

    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986)

    ADS  Article  Google Scholar 

  23. 23.

    P.H. Jones, O.M. Maragò, G. Volpe, Optical Tweezers: Principles and Applications (Cambridge University Press, Cambridge, UK, 2015)

    Google Scholar 

  24. 24.

    O.M. Maragò, P.H. Jones, P.G. Gucciardi, G. Volpe, A.C. Ferrari, Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8(11), 807–819 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    M.G. Donato, A. Mazzulla, P. Pagliusi, A. Magazzù, R.J. Hernandez, C. Provenzano, P.G. Gucciardi, O.M. Maragò, G. Cipparrone, Light-induced rotations of chiral birefringent microparticles in optical tweezers. Sci. Rep. 6, 31977 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    A. Irrera, A. Magazzú, P. Artoni, S.H. Simpson, S. Hanna, P.H. Jones, F. Priolo, P.G. Gucciardi, O.M. Maragó, Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires. Nano Lett. 16(7), 4181–4188 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    M.G. Donato, O. Brzobohatỳ, S.H. Simpson, A. Irrera, A.A. Leonardi, M.J. Lo Faro, V. Svak, O.M. Marago, P. Zemanek, Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams. Nano Lett. 19, 342–352 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    V. Svak, O. Brzobohatỳ, M. Šiler, P. Jákl, J. Kaňka, P. Zemánek, S.H. Simpson, Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat. Commun. 9(1), 1–8 (2018)

    Article  Google Scholar 

  29. 29.

    Y. Arita, S.H. Simpson, P. Zemánek, K. Dholakia, Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Sci. Adv. 6(23), eaaz9858 (2020)

    ADS  Article  Google Scholar 

  30. 30.

    F. Borghese, P. Denti, R. Saija, M.A. Iatì, O.M. Maragò, Radiation torque and force on optically trapped linear nanostructures. Phys. Rev. Lett. 100(16), 163903 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    B. Ferdinando, D. Paolo, S. Rosalba, Theory and Applications to Environmental Physics. Scattering from Model Nonspherical Particles (Springer, Berlin, 2007)

    Google Scholar 

  32. 32.

    M.I. Mishchenko, Radiation force caused by scattering, absorption, and emission of light by nonspherical particles. J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 811–816 (2001)

    ADS  Article  Google Scholar 

  33. 33.

    T.A. Nieminen, H. Rubinsztein-Dunlop, N.R. Heckenberg, Calculation and optical measurement of laser trapping forces on non-spherical particles. J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 627–637 (2001)

    ADS  Article  Google Scholar 

  34. 34.

    R. Saija, M.A. Iatì, A. Giusto, P. Denti, F. Borghese, Transverse components of the radiation force on nonspherical particles in the T-matrix formalism. J. Quant. Spectrosc. Radiat. Transf. 94(2), 163–179 (2005)

    ADS  Article  Google Scholar 

  35. 35.

    P. Polimeno, R. Saija, C.D.E. Boschi, O.M. Maragò, Optical forces in the t-matrix formalism. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 97(1), 2 (2019)

    Google Scholar 

  36. 36.

    F. Borghese, P. Denti, R. Saija, M.A. Iatì, Optical trapping of nonspherical particles in the T-matrix formalism. Opt. Express 15(19), 11984–11998 (2007)

    ADS  Article  Google Scholar 

  37. 37.

    M.A. Iatì, A. Giusto, R. Saija, F. Borghese, P. Denti, C. Cecchi-Pestellini, S. Aiello, Optical properties of composite interstellar grains: a morphological analysis. Astrophys. J. 615(1), 286 (2004)

    ADS  Article  Google Scholar 

  38. 38.

    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, United Kingdom, 1999)

    Google Scholar 

  39. 39.

    P. Debye, Das verhalten von lichtwellen in der nähe eines brennpunktes oder einer brennlinie. Annalen der Physik 335(14), 755–776 (1909)

    ADS  MATH  Article  Google Scholar 

  40. 40.

    S.H. Simpson, S. Hanna, Stability analysis and thermal motion of optically trapped nanowires. Nanotechnology 23(20), 205502 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    M.V. Berry, Optical currents. J. Opt. Pure Appl. Opt. 11(9), 094001 (2009)

    ADS  Article  Google Scholar 

  42. 42.

    C. Triolo, A. Cacciola, S. Patane, R. Saija, S. Savasta, F. Nori, Spin-momentum locking in the near field of metal nanoparticles. ACS Photonics 4(9), 2242–2249 (2017)

    Article  Google Scholar 

  43. 43.

    K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. 119(7), 073901 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    Konstantin Yu Bliokh and Franco Nori, Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    T.A. Nieminen, A.B. Stilgoe, N.R. Heckenberg, H. Rubinsztein-Dunlop, Angular momentum of a strongly focused gaussian beam. J. Opt. Pure Appl. Opt. 10(11), 115005 (2008)

    ADS  Article  Google Scholar 

  46. 46.

    G.A. Swartzlander jr, T.J. Peterson, A.B. Artusio-Glimpse, A.D. Raisanen, Stable optical lift. Nat. Photonics 5(1), 48–51 (2011)

    ADS  Article  Google Scholar 

  47. 47.

    S.H. Simpson, S. Hanna, Optical trapping of spheroidal particles in gaussian beams. J. Opt. Soc. Am. A 24(2), 430–443 (2007)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial contribution from the Agreement ASI-INAF n.2018-16-HH.0, Project ‘SPACE Tweezers’ and the Czech Science Agency (19-17765S).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Saija.

Additional information

Focus Point on Light Pressure across All Scales. Guest editors: A. Macchi, O. M. Maragò.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polimeno, P., Iatì, M.A., Degli Esposti Boschi, C. et al. T-matrix calculations of spin-dependent optical forces in optically trapped nanowires. Eur. Phys. J. Plus 136, 86 (2021). https://doi.org/10.1140/epjp/s13360-020-01057-5

Download citation