Coordinate space representation for renormalization of quantum electrodynamics

Abstract

We present a systematic treatment, up to order \(\alpha \), for the fundamental renormalization of quantum electrodynamics in real space. Although the standard renormalization is an old school problem for this case, it has not been completely done in position space yet. The most difference with well-known differential renormalization is that we do the whole procedure in coordinate space without needing to transform to momentum space. Specially, we directly derive the counterterms in coordinate space. This problem becomes crucial when the translational symmetry of the system breaks somehow explicitly (by nontrivial boundary condition (BC) on the fields). In this case, one is not able to move to momentum space by a simple Fourier transformation. In the context of the renormalized perturbation theory, counterterms in coordinate space will depend directly on the fields BCs (or background topology). Trivial BC or trivial background leads to the usual standard counterterms. If the counterterms are modified, then the quantum corrections of any physical quantity are different from those in free space where we have the translational invariance. We also show that, up to order \(\alpha \), our counterterms reduce to the usual standard one.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Schwinger, Electron Anomaly to Order \(\alpha \). Phys. Rev. 73, 416 (1948)

    Article  Google Scholar 

  2. 2.

    H. A. Kramers, Non-relativistic Quantum-electrodynamics and Correspondence Principle, in Proceedings Solvay Conference “es Particules Elementaires” (1948)

  3. 3.

    F.J. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486 (1949)

    MathSciNet  Article  ADS  Google Scholar 

  4. 4.

    J. Collins, Foundations of Perturbative QCD (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  5. 5.

    S. Coleman, Quantum sine-gordon equation as the massive thirring model. Phys. Rev. D 11, 2088 (1975)

    MathSciNet  Article  ADS  Google Scholar 

  6. 6.

    R.F. Dashen, B. Hasslacher, A. Neveu, Nonperturbative methods and extended-hadron models in field theory. II. Two-dimensional models and extended hadrons. Phys. Rev. D 10, 4130 (1974)

    Article  ADS  Google Scholar 

  7. 7.

    E. Brèzin, J.C. Le Guillou, J. Zinn-Justin, Perturbation theory at large order. I. The \(\phi ^{2N}\) interaction. Phys. Rev. D 15, 1544 (1977)

    Article  Google Scholar 

  8. 8.

    E. Brèzin, G. Parisi, Critical exponents and large-order behavior of perturbation theory. J. Stat. Phys. 19, 269 (1978)

    MathSciNet  Article  ADS  Google Scholar 

  9. 9.

    S. Weinberg, The Quantum Theory of Fields, Modern Applications, vol. 2 (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  10. 10.

    T.Y. Cao, Conceptual Foundations of Quantum Field Theory (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  11. 11.

    T.J. Hollowood, Renormalization Group and Fixed Points, In Quantum Field Theory (Springer, Berlin, 2013)

    Google Scholar 

  12. 12.

    S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  13. 13.

    O.J. Rosten, Fundamentals of the exact renormalization group. Phys. Rep. 511, 177 (2012)

    MathSciNet  Article  ADS  Google Scholar 

  14. 14.

    R. Moazzemi, A. Mohammadi, S.S. Gousheh, A renormalized perturbation theory for problems with nontrivial boundary conditions or backgrounds in two space-time dimensions. Eur. Phys. J. C 56, 585 (2008)

    Article  ADS  Google Scholar 

  15. 15.

    R. Moazzemi, S.S. Gousheh, A new renormalization approach to the dirichlet casimir effect for \( \phi ^4 \) theory in (1+1) dimensions. Phys. Lett. B 658, 255 (2008)

    Article  Google Scholar 

  16. 16.

    S.S. Gousheh, R. Moazzemi, M.A. Valuyan, Radiative correction to the dirichlet casimir energy for \(\lambda \phi ^4 \) theory in two spatial dimensions. Phys. Lett. B 681, 477 (2009)

    Article  Google Scholar 

  17. 17.

    R. Moazzemi, M. Namdar, S.S. Gousheh, The dirichlet casimir effect for \(\phi ^4\) theory in (3+1) dimensions: a new renormalization approach. JHEP 09, 029 (2007)

    MathSciNet  Article  Google Scholar 

  18. 18.

    M.A. Valuyan, Radiative correction to the Casimir energy for Lorentz-violating scalar field in d + 1 dimensions. Mod. Phys. Lett. A 35, 2050149 (2020)

    MathSciNet  Article  ADS  Google Scholar 

  19. 19.

    M.A. Valuyan, Radiative correction to the Casimir energy with mixed boundary condition in 2 + 1 dimensions. Indian J. Phys. (2020b). https://doi.org/10.1007/s12648-020-01758-8

    Article  Google Scholar 

  20. 20.

    S.S. Gousheh, A. Mohammadi, M. Asghari, R. Moazzemi, F. Charmchi, The radiative corrections to the mass of the Kink using an alternative renormalization program. JHEP 07, 060 (2012)

    Article  ADS  Google Scholar 

  21. 21.

    D.Z. Freedman, K. Johnson, J. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory. Nucl. Phys. B 371, 353 (1992)

    MathSciNet  Article  ADS  Google Scholar 

  22. 22.

    D.Z. Freedman, K. Johnson, R. Munoz-Tapia, X. Vilasis-Cardona, A Cutoff procedure and counterterms for differential renormalization. Nucl. Phys. B 395, 454 (1993)

    Article  ADS  Google Scholar 

  23. 23.

    F. del Aguila, M. Perez-Victor, Constrained differential renormalization. Acta Phys. Polon. B 28, 2279 (1997)

    Google Scholar 

  24. 24.

    V.A. Smirnov, Renormalization without regularization. Theor. Math. Phys. 117, 1368 (1998)

    Article  Google Scholar 

  25. 25.

    C.R. Pontes, A.B. Scarpelli, M. Sampaio, J.L. Acebal, M.C. Nemes, On the equivalence between implicit regularization and constrained differential renormalization. The Euro. Phys. J. C 53, 121 (2008)

    Article  ADS  Google Scholar 

  26. 26.

    V.A. Smirnov, Differential renormalization and dimensional regularization. Nucl. Phys. B 427, 325 (1994)

    MathSciNet  Article  ADS  Google Scholar 

  27. 27.

    G. Dunne, N. Rius, A Comment on the relationship between differential and dimensional renormalization. Phys. Lett. B 293, 367 (1992)

    MathSciNet  Article  ADS  Google Scholar 

  28. 28.

    P.E. Haagensen, J.I. Latorre, Differential renormalization of massive quantum field theories. Phys. Lett. B 283, 293 (1992)

    Article  ADS  Google Scholar 

  29. 29.

    P.E. Haagensen, J.I. Latorre, A comprehensive coordinate space renormalization of quantum electrodynamics toto two-loop order. Ann. Phys. 221, 77 (1993)

    Article  ADS  Google Scholar 

  30. 30.

    E.M. Malatesta, G. Parisi, T. Rizzo, Two-loop corrections to large order behavior of \(\phi ^4\) theory. Nucl. Phys B922, 293 (2017)

    MathSciNet  Article  Google Scholar 

  31. 31.

    R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (The University of Chicago Press, Chicago, 1994)

    Google Scholar 

  32. 32.

    K. Frednhagen, K. Rejzner, QFT on curved Spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)

    MathSciNet  Article  ADS  Google Scholar 

  33. 33.

    I. Todorov, Renormalization of position space amplitudes in a massless QFT. Phys. Particles Nuclei 48, 227 (2017)

    Article  ADS  Google Scholar 

  34. 34.

    I. Todorov, Relativistic causality and position space renormalization. Nuclear Phys. B 912, 79 (2016)

    MathSciNet  Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amirhosein Mojavezi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mojavezi, A., Moazzemi, R. & Zomorrodian, M.E. Coordinate space representation for renormalization of quantum electrodynamics. Eur. Phys. J. Plus 136, 200 (2021). https://doi.org/10.1140/epjp/s13360-020-01051-x

Download citation