Influence of plastic deformation on the microstructural and magnetic properties of some Fe-based alloys

Abstract

We report the morphological and magnetic properties of deformation-induced martensite characteristics in the austenite phase of Fe69Ni27Mn4 and Fe67Ni27Mn4Zn2 (wt %) alloys after 30% plastic deformation. Scanning electron microscopy (SEM) and also physical property measurement system (PPMS) facilities were applied to investigation to clarify the deformation-induced martensite characteristics from morphological and magnetic points of view. Scanning electron microscope observations showed elongated deformation-induced martensite morphology in the austenite phase of the examined alloys. Additionally, two alloys exhibited typical ferromagnetism in their martensite phase. The saturation magnetization (Msat) was found to be firstly increased and then decreased with increasing temperature. We found that the  % Zn addition shifts the Curie temperature (Tc) of Fe–Ni–Mn alloys to higher temperatures. The largest Msat (~ 27 emu·g−1), the Hc (~ 26 Oe), and Tc (~ 248) were obtained for the Fe–Ni–Mn–Zn alloy with a mixed configuration of bcc and fcc phases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.].

References

  1. 1.

    J.W. Christian, Military transformations: an introductory survey, in Physical Properties of Martensite and Bainite; Iron and Steel Institute (London, UK 1965)

  2. 2.

    C.M. Wayman, Martensitic transformations, in Modern Diffraction and Imaging Techniques in Materials Science, ed. by S. Amelinckx, R. Gevers, G. Remaut, J. Van Lunduyt (North-Holland Publishing Company, Amsterdam, 1970)

    Google Scholar 

  3. 3.

    G.B. Olsen, W.S. Owen, Martensite (ASM Press, Washington, 1992)

    Google Scholar 

  4. 4.

    K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape Memory Effect (Oxford University Press, Oxford, 2004)

    Google Scholar 

  5. 5.

    C.M. Wayman, The growth of martensite since E.C. Bain (1924)- some milestones. Mater. Sci. Forum 1, 56–58 (1990)

    Google Scholar 

  6. 6.

    Z. Nishiyama, Martensitic Transformations (Academic Press, New York, 1978)

    Google Scholar 

  7. 7.

    E. Güler, M. Güler, Deformation induced martensite characterization in Fe-30%Ni-5%Cu alloy. J Min. Metall. Sect. B-Metall. 48(2B), 259–264 (2012)

    Article  Google Scholar 

  8. 8.

    T.N. Durlu, Dislocations in fully twinned thin plate martensite of an Fe-Ni-C alloy. J. Mater. Sci. Lett. 15, 1510–1512 (1996)

    Article  Google Scholar 

  9. 9.

    S.Y. Yu, S.S. Yan, S.S. Kang, X.D. Tang, J.F. Qian, J.L. Chen, G.H. Wu, Magnetic field-induced martensite–austenite transformation in Fe-substituted NiMnGa ribbons. Scr. Mater. 65, 9–12 (2011)

    Article  Google Scholar 

  10. 10.

    T. Kakeshita, J. Katsuyama, T. Fukuda, T. Saburi, Time-dependent nature of displacive transformations in Fe–Ni and Fe–Ni–Mn alloys under magnetic field and hydrostatic pressure. Mater. Sci. Eng., A 312, 219 (2001)

    Article  Google Scholar 

  11. 11.

    D.Z. Yang, B.P.J. Sandvik, C.M. Wayman, On the substructure of athermal ans isothermal martensites formed in an Fe-21Ni-4Mn alloy. Metall. Trans. A 15, 1555–1562 (1984)

    Article  Google Scholar 

  12. 12.

    G.V. Kurdjumov, D.P. Maximova, Dohl. Nauk SSSR 73, 95 (1950)

    Google Scholar 

  13. 13.

    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, M. Date, Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe–Ni–Mn alloys. Mater. Trans., JIM 34, 415–422 (1993)

    Article  Google Scholar 

  14. 14.

    E.I. Kondorskyand, V.L. Sedov, J. App1. Phys 31, 331s (1960)

    Article  Google Scholar 

  15. 15.

    R.J. Weiss, The origin of the Invar’ effect. Proc. Phys. Soc. 82, 281–288 (1963)

    ADS  Article  Google Scholar 

  16. 16.

    Y. Nakamura, M. Shiga, N. Shikazono, Mössbauer study of invar-type iron nickel alloys. J. Phys. Soc. Japan 19, 1177–1181 (1964)

    ADS  Article  Google Scholar 

  17. 17.

    B.D. Cullity, Introduction to Magnetic Materials, Chapter 8 (Addison Wesley, Boston, 1972)

    Google Scholar 

  18. 18.

    J. William, D. Callister, Material Science and Engineering (Wiley, Hoboken, 2007)

    Google Scholar 

  19. 19.

    E. Güler, H. Aktaş, Deformation induced martensite characteristics in Fe–29Ni–2Mn alloy. Mater. Sci. Techn. 24, 1204–1208 (2008)

    Article  Google Scholar 

  20. 20.

    E. Koyuncuoglu, E. Aldırmaz, M. Guler, F.F. Kulucan, E. Guler, Magnetic and kinetical properties of Fe-27%Ni-4%Mn and Fe-27%Ni-4%Mn-2%Zn alloys investigated by VSM and DSC. J. Supercond. Novel Magn. 32, 1431–1436 (2019)

    Article  Google Scholar 

  21. 21.

    Y.E. Gerdan, E. Aldirmaz, M. Guler, H. Tanak, E. Guler, Martensitic transformation and magnetic properties of the CuAl, CuAlMn, and CuAlMnZn alloys. J. Superc. Novel Magn. 31, 3919–3923 (2018)

    Article  Google Scholar 

  22. 22.

    M. Guler, E. Aldirmaz, S. Gul, I. Gul, E. Guler, Structural and magnetic properties of thermal- and deformation-induced martensite in an Fe-27%Ni-4%Mn-1%Zn alloy. J Supercond Nov Magn 31, 381–386 (2018)

    Article  Google Scholar 

  23. 23.

    D.C. Jiles, Recent advances and future directions in magnetic materials. Acta Mater. 51, 5907 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    A.A. Gavrilyuk, N.V. Morozova, A.L. Semenov, I.L. Morozov, A.V. Gavrilyuk, E.A. Golygin, S.M. Zubritskii, V.I. Kokorin, Effect of plastic deformation on the magnetic properties of rapid-quenched cobalt-based metal wires. Russ J Nondestruct Test 54, 648–653 (2018)

    Article  Google Scholar 

  25. 25.

    D.C. Jiles, D. Utrata, Effect of tensile plastic deformation on the magnetic properties of AISI 4140 steel. J. Nondestruct. Eval. 6, 129–134 (1987)

    Article  Google Scholar 

  26. 26.

    F.J.G. Landgraf, M. Emura, K. Ito, P.S.G. Carvalho, Effect of plastic deformation on the magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 215–216, 94–96 (2000)

    ADS  Article  Google Scholar 

  27. 27.

    E. Hug, O. Hubert, M. Clavel, Some aspects of the magnetomechanical coupling in the strengthening of nonoriented and grain-oriented 3% SiFe alloys. IEEE Trans. Mag. 33, 763–771 (1997)

    ADS  Article  Google Scholar 

  28. 28.

    D.G. Hwang, H.C. Kim, The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel. J. Phys. D. 21, 1807–1813 (1988)

    ADS  Article  Google Scholar 

  29. 29.

    L. Piotrowski, M. Chmielewski, Z.L. Kowalewski, The dominant influence of plastic deformation induced residual stress on the Barkhausen effect signal in martensitic steels. J Nondestruct. Eval. 36, 1–10 (2017)

    Article  Google Scholar 

  30. 30.

    F. Zeng, X.J. Bai, C.L. Hu, M.J. Tang, Z. Zhen, Effect of plastic strain and forming temperature on magnetic properties of low-carbon steel. Int. J. Miner. Metall. Mater. 27, 210–219 (2020)

    Article  Google Scholar 

  31. 31.

    E.J. Gutiérrez Castañeda, R.E. Barreras Castro, A. Contreras Briseño, B. Fernández Arguijo, A.A. Torres Castillo, A. Salinas Rodríguez, J.T. Elizalde Galindo, S.A. Palomares Sánchez, Effect of quenching and normalizing on the microstructure and magnetocaloric effect of a Cu–11Al–9Zn Alloy with 6.5 wt% Ni–2.5 wt% Fe. Magnetochem 5(3), 48–60 (2019)

    Article  Google Scholar 

  32. 32.

    M. Shiga, Magnetic properties of Fe65(Ni1-xMnx)35 ternary alloys. J. Phys. Soc. Japan 22, 539–546 (1967)

    ADS  Article  Google Scholar 

  33. 33.

    K. Kadau, M. Gruner, P. Entel, M. Kreth, Modeling structural and magnetic phase transitions in iron-nickel nanoparticles. Phase Transit. 76, 355–365 (2003)

    Article  Google Scholar 

  34. 34.

    J.J. Ipus, H. Ucar, M.E. McHenry, Near room temperature magnetocaloric response of an (FeNi) ZrB Alloy. IEEE Trans. Magn. 47, 2494–2497 (2011)

    ADS  Article  Google Scholar 

  35. 35.

    L.J. Swartzendruber, V.P. Itkin, C.B. Alcock, The Fe-Ni (iron-nickel) system. J. Phase Equillibria 12, 288–312 (1991)

    Article  Google Scholar 

  36. 36.

    L.M. Moreno, J.S. Blázquez, J.J. Ipus, J.M. Borrego, V. Franco, A. Conde, Magnetocaloric effect of Co62Nb6Zr2B30 amorphous alloys obtained by mechanical alloying or rapid quenching. J. Appl. Phys. 115, 17A302 (2014)

    Article  Google Scholar 

  37. 37.

    J. Petzold, Advantages of softmagnetic nanocrystalline materials for modern electronic applications. J Mag. Mag. Mater. 242–245, 84–89 (2002)

    ADS  Article  Google Scholar 

  38. 38.

    E. Lacheisserie, D. Gignoux, M. Schlenker, Magnetism: Fundamentals (Springer, Boston, 2005)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Amasya University Research Project Unit under Project No. FMB-BAP 15-093.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Aldirmaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aldirmaz, E., Güler, M. & Güler, E. Influence of plastic deformation on the microstructural and magnetic properties of some Fe-based alloys. Eur. Phys. J. Plus 136, 98 (2021). https://doi.org/10.1140/epjp/s13360-020-01021-3

Download citation