Abstract
We report the morphological and magnetic properties of deformation-induced martensite characteristics in the austenite phase of Fe69Ni27Mn4 and Fe67Ni27Mn4Zn2 (wt %) alloys after 30% plastic deformation. Scanning electron microscopy (SEM) and also physical property measurement system (PPMS) facilities were applied to investigation to clarify the deformation-induced martensite characteristics from morphological and magnetic points of view. Scanning electron microscope observations showed elongated deformation-induced martensite morphology in the austenite phase of the examined alloys. Additionally, two alloys exhibited typical ferromagnetism in their martensite phase. The saturation magnetization (Msat) was found to be firstly increased and then decreased with increasing temperature. We found that the % Zn addition shifts the Curie temperature (Tc) of Fe–Ni–Mn alloys to higher temperatures. The largest Msat (~ 27 emu·g−1), the Hc (~ 26 Oe), and Tc (~ 248) were obtained for the Fe–Ni–Mn–Zn alloy with a mixed configuration of bcc and fcc phases.
This is a preview of subscription content, access via your institution.




Data Availability
This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.].
References
- 1.
J.W. Christian, Military transformations: an introductory survey, in Physical Properties of Martensite and Bainite; Iron and Steel Institute (London, UK 1965)
- 2.
C.M. Wayman, Martensitic transformations, in Modern Diffraction and Imaging Techniques in Materials Science, ed. by S. Amelinckx, R. Gevers, G. Remaut, J. Van Lunduyt (North-Holland Publishing Company, Amsterdam, 1970)
- 3.
G.B. Olsen, W.S. Owen, Martensite (ASM Press, Washington, 1992)
- 4.
K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape Memory Effect (Oxford University Press, Oxford, 2004)
- 5.
C.M. Wayman, The growth of martensite since E.C. Bain (1924)- some milestones. Mater. Sci. Forum 1, 56–58 (1990)
- 6.
Z. Nishiyama, Martensitic Transformations (Academic Press, New York, 1978)
- 7.
E. Güler, M. Güler, Deformation induced martensite characterization in Fe-30%Ni-5%Cu alloy. J Min. Metall. Sect. B-Metall. 48(2B), 259–264 (2012)
- 8.
T.N. Durlu, Dislocations in fully twinned thin plate martensite of an Fe-Ni-C alloy. J. Mater. Sci. Lett. 15, 1510–1512 (1996)
- 9.
S.Y. Yu, S.S. Yan, S.S. Kang, X.D. Tang, J.F. Qian, J.L. Chen, G.H. Wu, Magnetic field-induced martensite–austenite transformation in Fe-substituted NiMnGa ribbons. Scr. Mater. 65, 9–12 (2011)
- 10.
T. Kakeshita, J. Katsuyama, T. Fukuda, T. Saburi, Time-dependent nature of displacive transformations in Fe–Ni and Fe–Ni–Mn alloys under magnetic field and hydrostatic pressure. Mater. Sci. Eng., A 312, 219 (2001)
- 11.
D.Z. Yang, B.P.J. Sandvik, C.M. Wayman, On the substructure of athermal ans isothermal martensites formed in an Fe-21Ni-4Mn alloy. Metall. Trans. A 15, 1555–1562 (1984)
- 12.
G.V. Kurdjumov, D.P. Maximova, Dohl. Nauk SSSR 73, 95 (1950)
- 13.
T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, M. Date, Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe–Ni–Mn alloys. Mater. Trans., JIM 34, 415–422 (1993)
- 14.
E.I. Kondorskyand, V.L. Sedov, J. App1. Phys 31, 331s (1960)
- 15.
R.J. Weiss, The origin of the Invar’ effect. Proc. Phys. Soc. 82, 281–288 (1963)
- 16.
Y. Nakamura, M. Shiga, N. Shikazono, Mössbauer study of invar-type iron nickel alloys. J. Phys. Soc. Japan 19, 1177–1181 (1964)
- 17.
B.D. Cullity, Introduction to Magnetic Materials, Chapter 8 (Addison Wesley, Boston, 1972)
- 18.
J. William, D. Callister, Material Science and Engineering (Wiley, Hoboken, 2007)
- 19.
E. Güler, H. Aktaş, Deformation induced martensite characteristics in Fe–29Ni–2Mn alloy. Mater. Sci. Techn. 24, 1204–1208 (2008)
- 20.
E. Koyuncuoglu, E. Aldırmaz, M. Guler, F.F. Kulucan, E. Guler, Magnetic and kinetical properties of Fe-27%Ni-4%Mn and Fe-27%Ni-4%Mn-2%Zn alloys investigated by VSM and DSC. J. Supercond. Novel Magn. 32, 1431–1436 (2019)
- 21.
Y.E. Gerdan, E. Aldirmaz, M. Guler, H. Tanak, E. Guler, Martensitic transformation and magnetic properties of the CuAl, CuAlMn, and CuAlMnZn alloys. J. Superc. Novel Magn. 31, 3919–3923 (2018)
- 22.
M. Guler, E. Aldirmaz, S. Gul, I. Gul, E. Guler, Structural and magnetic properties of thermal- and deformation-induced martensite in an Fe-27%Ni-4%Mn-1%Zn alloy. J Supercond Nov Magn 31, 381–386 (2018)
- 23.
D.C. Jiles, Recent advances and future directions in magnetic materials. Acta Mater. 51, 5907 (2003)
- 24.
A.A. Gavrilyuk, N.V. Morozova, A.L. Semenov, I.L. Morozov, A.V. Gavrilyuk, E.A. Golygin, S.M. Zubritskii, V.I. Kokorin, Effect of plastic deformation on the magnetic properties of rapid-quenched cobalt-based metal wires. Russ J Nondestruct Test 54, 648–653 (2018)
- 25.
D.C. Jiles, D. Utrata, Effect of tensile plastic deformation on the magnetic properties of AISI 4140 steel. J. Nondestruct. Eval. 6, 129–134 (1987)
- 26.
F.J.G. Landgraf, M. Emura, K. Ito, P.S.G. Carvalho, Effect of plastic deformation on the magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 215–216, 94–96 (2000)
- 27.
E. Hug, O. Hubert, M. Clavel, Some aspects of the magnetomechanical coupling in the strengthening of nonoriented and grain-oriented 3% SiFe alloys. IEEE Trans. Mag. 33, 763–771 (1997)
- 28.
D.G. Hwang, H.C. Kim, The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel. J. Phys. D. 21, 1807–1813 (1988)
- 29.
L. Piotrowski, M. Chmielewski, Z.L. Kowalewski, The dominant influence of plastic deformation induced residual stress on the Barkhausen effect signal in martensitic steels. J Nondestruct. Eval. 36, 1–10 (2017)
- 30.
F. Zeng, X.J. Bai, C.L. Hu, M.J. Tang, Z. Zhen, Effect of plastic strain and forming temperature on magnetic properties of low-carbon steel. Int. J. Miner. Metall. Mater. 27, 210–219 (2020)
- 31.
E.J. Gutiérrez Castañeda, R.E. Barreras Castro, A. Contreras Briseño, B. Fernández Arguijo, A.A. Torres Castillo, A. Salinas Rodríguez, J.T. Elizalde Galindo, S.A. Palomares Sánchez, Effect of quenching and normalizing on the microstructure and magnetocaloric effect of a Cu–11Al–9Zn Alloy with 6.5 wt% Ni–2.5 wt% Fe. Magnetochem 5(3), 48–60 (2019)
- 32.
M. Shiga, Magnetic properties of Fe65(Ni1-xMnx)35 ternary alloys. J. Phys. Soc. Japan 22, 539–546 (1967)
- 33.
K. Kadau, M. Gruner, P. Entel, M. Kreth, Modeling structural and magnetic phase transitions in iron-nickel nanoparticles. Phase Transit. 76, 355–365 (2003)
- 34.
J.J. Ipus, H. Ucar, M.E. McHenry, Near room temperature magnetocaloric response of an (FeNi) ZrB Alloy. IEEE Trans. Magn. 47, 2494–2497 (2011)
- 35.
L.J. Swartzendruber, V.P. Itkin, C.B. Alcock, The Fe-Ni (iron-nickel) system. J. Phase Equillibria 12, 288–312 (1991)
- 36.
L.M. Moreno, J.S. Blázquez, J.J. Ipus, J.M. Borrego, V. Franco, A. Conde, Magnetocaloric effect of Co62Nb6Zr2B30 amorphous alloys obtained by mechanical alloying or rapid quenching. J. Appl. Phys. 115, 17A302 (2014)
- 37.
J. Petzold, Advantages of softmagnetic nanocrystalline materials for modern electronic applications. J Mag. Mag. Mater. 242–245, 84–89 (2002)
- 38.
E. Lacheisserie, D. Gignoux, M. Schlenker, Magnetism: Fundamentals (Springer, Boston, 2005)
Acknowledgements
This work is supported by the Amasya University Research Project Unit under Project No. FMB-BAP 15-093.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aldirmaz, E., Güler, M. & Güler, E. Influence of plastic deformation on the microstructural and magnetic properties of some Fe-based alloys. Eur. Phys. J. Plus 136, 98 (2021). https://doi.org/10.1140/epjp/s13360-020-01021-3
Received:
Accepted:
Published: