Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications

Abstract

Five glass samples with the composition of 20CdO–10SrO–(70 − x) B2O3xMoO3, where x = 0, 5, 10, 15, and 20 mol%, were analyzed for their radiation shielding properties. The study seeks to observe the effect of increasing the concentration of MoO3 on gamma photon shielding features. The linear attenuation coefficient (LAC) of the fabricated glasses was measured experimentally at five different gamma-ray energies 0.662, 0.184, 0.28, 0.71, and 0.81 MeV. Moreover, the LAC's experimental results of all fabricated glass samples were compared with the Monte Carlo simulation code (MCNP-5) and XCOM program. The measured data and those obtained theoretically using the MCNP-5 code and XCOM program showed strong compatibility. Various parameters were analyzed to determine the glasses' viability as radiation shields, including mass attenuation coefficient, linear attenuation coefficient, radiation protection efficiency, transmission factor, half-value layer, and mean free path. The data were recorded and plotted, and it was determined that the glass coded as MB20 is the most efficient radiation shield out of the investigated samples. The experimental measurements depict that the highest LAC obtained at gamma photon energy 0.184 MeV decreased in the range between 0.557 and 0.894 cm−1, while the lowest obtained at 0.81 MeV and decreased from 0.218 to 0.38 cm−1 for the investigated glass samples MB0 and MB20, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    M. Dong, X. Xue, A. Kumar, H. Yang, M.I. Sayyed, S. Liu, E. Bu, A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018)

    Article  Google Scholar 

  2. 2.

    M. Dong, X. Xue, H. Yang, D. Liu, C. Wang, Z. Li, comprehensive utilization of vanadium slag: as gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016)

    Article  Google Scholar 

  3. 3.

    D. Fang, X. Zhang, M. Dong, X. Xue, A novel method to remove chromium, vanadium and ammonium from vanadium industrial wastewater using a byproduct of magnesium-based wet flue gas desulfurization. J. Hazard. Mater. 336, 8–20 (2017)

    Article  Google Scholar 

  4. 4.

    E.M. Jemes, Principles of Radiological Health and Safety, 1st edn. (Wiley, Hoboken, 2003).

    Google Scholar 

  5. 5.

    H.J. Kim, Three principles for radiation safety: time, distance, and shielding. Kor. J. Pain 31, 145 (2018)

    Article  Google Scholar 

  6. 6.

    M.D. Bethesda, National Council on Radiation Protection and Measurements (Radiation Protection in Dentistry, NCRP, Bethesda, 2003).

    Google Scholar 

  7. 7.

    S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    ADS  Article  Google Scholar 

  8. 8.

    S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    K.A. Mahmoud, O.L. Tashlykov, A.F. El Wakil, H.M.H. Zakaly, I.E. El Aassy, Investigation of radiation shielding properties for some building materials reinforced by basalt powder. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5134187

    Article  Google Scholar 

  10. 10.

    Y.S.M. Alajerami, D.A. Drabold, M.H.A. Mhareb, N.S. Kashi, L.A.C. Katherine, C. Gang, Physical, structural, and shielding properties of cadmium bismuth borate-based glasses. J. Appl. Phys. 127, 175102 (2020). https://doi.org/10.1063/1.5143116

    ADS  Article  Google Scholar 

  11. 11.

    Y.S.M. Alajerami, D.A. Drabold, M.H.A. Mhareb, L.A.C. Katherine, C. Gang, K. Murat, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 46, 12718–12726 (2020)

    Article  Google Scholar 

  12. 12.

    M.K. Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, S. Gameel, Y. Maswadeh, K.A. Ziq, Radiation shielding properties of Nd0.6Sr0.4Mn1−yNiyO3 substitute with different concentrations of nickle. Radiat. Phys. Chem. 174, 108920 (2020)

    Article  Google Scholar 

  13. 13.

    N. Singh, R.S. Kaundal, K.J. Singh, γ-ray shielding properties of lead and bismuth borosilicate glasses. Glass Technol. 46, 311–314 (2005)

    Google Scholar 

  14. 14.

    M.I. Sayyed, A.H. Abdalsalam, M.M. Taki, M.H.A. Mhareb, A. Baltakesmez, Ş Erdem, MoO3 reinforced ultra high molecular weight PE for neutrons shielding applications. Radiat. Phys. Chem. 172, 108852 (2020)

    Article  Google Scholar 

  15. 15.

    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloy. Compd. 745, 355–364 (2018)

    Article  Google Scholar 

  16. 16.

    A.V. Ravi, C.S. Kumar, G.M.K. Rao, V.R. Kumar, N. Veeraiah, Structural features of MoO3 doped sodium sulpho borophosphate glasses by means of spectroscopic and dielectric dispersion studies. J. Mol. Struct. 1016, 39–46 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    M. Rada, S. Rada, P. Pascuta, E. Culea, Structural properties of molybdenum-lead-borate glasses. Spectrochim. Acta A Mol. Biomol. Spectosc. 77, 832–837 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    F.H. El Batal, S.M. Abo-Naf, S.Y. Marzouk, Gamma ray interactions with MoO3-doped lead phosphate glasses. J. Philos. Mag. 91, 341–356 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    A. Kumar, S.P. Singh, Y. Elmahroug, U. Kara, H.O. Tekin, M.I. Sayyed, Gamma ray shielding studies on 26.66 B2O3–16GeO2–4Bi2O3–(53.33–x) PbO–xPbF2 glass system using MCNPX, Geant4 and XCOM. Mater. Res. Express 5, 095203 (2018). https://doi.org/10.1088/2053-1591/aad821

    ADS  Article  Google Scholar 

  20. 20.

    D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite-based glasses. J. Non Cryst. Solids 503–504, 158–168 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, A. Novatski, R. El-Mallawany, Role of ZnO on TeO2 Li2O ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. J. Non Crystall. Solids 544, 120162 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120162

    Article  Google Scholar 

  22. 22.

    M.I. Sayyed, A.A. Ali, M.H.A. Mhareb, K.A. Mahmoud, K.M. Kaky, M.A. Mahdi. Baki, Novel tellurite glass (60–x)TeO2–10GeO2–20ZnO–10BaO–xBi2O3 for radiation shielding. J. Alloys Compd. 844, 155668 (2020). https://doi.org/10.1016/j.jallcom.2020.155668

    Article  Google Scholar 

  23. 23.

    K.M. Kaky, M.I. Sayyed, A.A. Ali, M.H.A. Mhareb, K.A. Mahmoud, S.O. Baki, Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system. J. Non Cryst. Solids 546, 120272 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120272

    Article  Google Scholar 

  24. 24.

    K.A. Mahmoud, O.L. Tashlykov, A.F. El Wakil, I.E. El Aassy, Aggregates grain size and press rate dependence of the shielding parameters for some concretes. Prog. Nucl. Energy 118, 103092 (2020). https://doi.org/10.1016/j.pnucene.2019.103092

    Article  Google Scholar 

  25. 25.

    Y.S. Rammah, K.A. Mahmoud, E. Kavaz, A. Kumar, F.I. El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.018

    Article  Google Scholar 

  26. 26.

    K.A. Mahmoud, E. Lacomme, M.I. Sayyed, Ö.F. Özpolat, O.L. Tashlykov, Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon 6, e03560 (2020)

    Article  Google Scholar 

  27. 27.

    R. Divina, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Physical and structural effect of modifiers on dysprosium ions incorporated boro-tellurite glasses for radiation shielding purposes. Ceram. Int. 46, 17929–17937 (2020). https://doi.org/10.1016/j.ceramint.2020.04.102

    Article  Google Scholar 

  28. 28.

    Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, R. El-mallawany, I. Erkan, K. Gokhan, FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03440-5

    Article  Google Scholar 

  29. 29.

    Y.S. Rammah, K.A. Mahmoud, M.I. Sayyed, F.I. El-Agwany, R. El-mallawany, Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnO-Na2O–V2O5: synthesis, optical, physical and gamma photon attenuation properties. J. Non Crystall. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.119944

    Article  Google Scholar 

  30. 30.

    K.M. Kaky, M.I. Sayyed, M.H.A. Mhareb, A.H. Abdalsalam, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications. J. Non Cryst. Solids 545, 120250 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120250

    Article  Google Scholar 

  31. 31.

    Y. Al-Hadeethi, M.I. Sayyed, The influence of PbO on the radiation attenuation features of tellurite glass. Ceram. Int. 45, 24230–24235 (2019)

    Article  Google Scholar 

  32. 32.

    E.-S.A. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150, 120–124 (2018)

    ADS  Article  Google Scholar 

  33. 33.

    M.J. Berger, J H. Hubbel, XCOM: Photon Cross Sections Database, Gaithersburg, MD 20899, USA, 1987. http://physics.nist.gov/xcom.

  34. 34.

    E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. 160, 112–123 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.032

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia for providing funding for this study (Grant No. 2020-068-BASRC) and gratefully acknowledge the use of the services and facilities of the Basic and Applied Scientific Research Center at Imam Abdulrahman Bin Faisal University. The authors also wish to thank Dr. Nidal Dwaikat who designed the gamma-ray irradiation system and carried out the experimental part in the Physics department at KFUPM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. A. Mahmoud.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sayyed, M.I., Mahmoud, K.A., Lacomme, E. et al. Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications. Eur. Phys. J. Plus 136, 108 (2021). https://doi.org/10.1140/epjp/s13360-020-01011-5

Download citation