Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows

Abstract

Violations of both the weak equivalence principle (WEP) and Lorentz invariance can produce vacuum birefringence, which leads to an energy-dependent rotation of the polarization vector of linearly polarized emission from a given astrophysical source. However, the search for the birefringent effect has been hindered by our ignorance concerning the intrinsic polarization angle in different energy bands. Considering the contributions to the observed linear polarization angle from both the intrinsic polarization angle and the rotation angles induced by violations of the WEP and Lorentz invariance, and assuming the intrinsic polarization angle is an unknown constant, we simultaneously obtain robust bounds on possible deviations from the WEP and Lorentz invariance, by directly fitting the multiwavelength polarimetric data of the optical afterglows of gamma-ray burst (GRB) 020813 and GRB 021004. Here, we show that at the \(3\sigma \) confidence level, the difference of the parameterized post-Newtonian parameter \(\gamma \) values characterizing the departure from the WEP is constrained to be \(\varDelta \gamma =\left( -4.5^{+10.0}_{-16.0}\right) \times 10^{-24}\) and the birefringent parameter \(\eta \) quantifying the broken degree of Lorentz invariance is limited to be \(\eta =\left( 6.5^{+15.0}_{-14.0}\right) \times 10^{-7}\). These are the first simultaneous verifications of the WEP and Lorentz invariance in the photon sector. More stringent limits can be expected as the analysis presented here is applied to future multiwavelength polarization observations in the prompt gamma-ray emission of GRBs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Although the potential model of the Milky Way is still not well known, Ref. [3] examined two popular potential models (i.e., the Keplerian potential and the isothermal potential) and suggested that the adoption of a different model for \(U_\mathrm{MW}(r)\) has only a minimal influence on the WEP tests.

References

  1. 1.

    C.M. Will, Living Rev. Relativ. 9, 3 (2006). https://doi.org/10.12942/lrr-2006-3

    ADS  Article  Google Scholar 

  2. 2.

    C.M. Will, Living Rev. Relativ. 17, 4 (2014). https://doi.org/10.12942/lrr-2014-4

    ADS  Article  Google Scholar 

  3. 3.

    L.M. Krauss, S. Tremaine, Phys. Rev. Lett. 60, 176 (1988). https://doi.org/10.1103/PhysRevLett.60.176

    ADS  Article  Google Scholar 

  4. 4.

    M.J. Longo, Phys. Rev. Lett. 60, 173 (1988). https://doi.org/10.1103/PhysRevLett.60.173

    ADS  Article  Google Scholar 

  5. 5.

    H. Gao, X.F. Wu, P. Mészáros, Astrophys. J. 810, 121 (2015). https://doi.org/10.1088/0004-637X/810/2/121

    ADS  Article  Google Scholar 

  6. 6.

    J.J. Wei, H. Gao, X.F. Wu, P. Mészáros, Phys. Rev. Lett. 115(26), 261101 (2015). https://doi.org/10.1103/PhysRevLett.115.261101

    ADS  Article  Google Scholar 

  7. 7.

    J.J. Wei, J.S. Wang, H. Gao, X.F. Wu, Astrophys. J. 818, L2 (2016). https://doi.org/10.3847/2041-8205/818/1/L2

    ADS  Article  Google Scholar 

  8. 8.

    J.J. Wei, X.F. Wu, H. Gao, P. Mészáros, JCAP 8, 031 (2016). https://doi.org/10.1088/1475-7516/2016/08/031

    ADS  Article  Google Scholar 

  9. 9.

    J.J. Wei, B.B. Zhang, X.F. Wu, H. Gao, P. Mészáros, B. Zhang, Z.G. Dai, S.N. Zhang, Z.H. Zhu, JCAP 11, 035 (2017). https://doi.org/10.1088/1475-7516/2017/11/035

    ADS  Article  Google Scholar 

  10. 10.

    J.J. Wei, B.B. Zhang, L. Shao, H. Gao, Y. Li, Q.Q. Yin, X.F. Wu, X.Y. Wang, B. Zhang, Z.G. Dai, J. High Energy Astrophys. 22, 1 (2019). https://doi.org/10.1016/j.jheap.2019.01.002

    ADS  Article  Google Scholar 

  11. 11.

    E.O. Kahya, S. Desai, Phys. Lett. B 756, 265 (2016). https://doi.org/10.1016/j.physletb.2016.03.033

    ADS  Article  Google Scholar 

  12. 12.

    X. Li, Y.M. Hu, Y.Z. Fan, D.M. Wei, Astrophys. J. 827, 75 (2016). https://doi.org/10.3847/0004-637X/827/1/75

    ADS  Article  Google Scholar 

  13. 13.

    A. Nusser, Astrophys. J. 821, L2 (2016). https://doi.org/10.3847/2041-8205/821/1/L2

    ADS  Article  Google Scholar 

  14. 14.

    Y. Sang, H.N. Lin, Z. Chang, Mon. Not. R. Astron. Soc. 460, 2282 (2016). https://doi.org/10.1093/mnras/stw1136

    ADS  Article  Google Scholar 

  15. 15.

    S.J. Tingay, D.L. Kaplan, Astrophys. J. 820, L31 (2016). https://doi.org/10.3847/2041-8205/820/2/L31

    ADS  Article  Google Scholar 

  16. 16.

    Z.Y. Wang, R.Y. Liu, X.Y. Wang, Phys. Rev. Lett. 116(15), 151101 (2016). https://doi.org/10.1103/PhysRevLett.116.151101

    ADS  Article  Google Scholar 

  17. 17.

    X.F. Wu, H. Gao, J.J. Wei, P. Mészáros, B. Zhang, Z.G. Dai, S.N. Zhang, Z.H. Zhu, Phys. Rev. D 94(2), 024061 (2016). https://doi.org/10.1103/PhysRevD.94.024061

    ADS  Article  Google Scholar 

  18. 18.

    X.F. Wu, J.J. Wei, M.X. Lan, H. Gao, Z.G. Dai, P. Mészáros, Phys. Rev. D 95(10), 103004 (2017). https://doi.org/10.1103/PhysRevD.95.103004

    ADS  Article  Google Scholar 

  19. 19.

    Y.P. Yang, B. Zhang, Phys. Rev. D 94(10), 101501 (2016). https://doi.org/10.1103/PhysRevD.94.101501

    ADS  Article  Google Scholar 

  20. 20.

    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya et al., Astrophys. J. 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    ADS  Article  Google Scholar 

  21. 21.

    M. Liu, Z. Zhao, X. You, J. Lu, L. Xu, Phys. Lett. B 770, 8 (2017). https://doi.org/10.1016/j.physletb.2017.04.033

    ADS  Article  Google Scholar 

  22. 22.

    Y. Zhang, B. Gong, Astrophys. J. 837, 134 (2017). https://doi.org/10.3847/1538-4357/aa61fb

    ADS  Article  Google Scholar 

  23. 23.

    S. Desai, E. Kahya, Eur. Phys. J. C 78, 86 (2018). https://doi.org/10.1140/epjc/s10052-018-5571-0

    ADS  Article  Google Scholar 

  24. 24.

    C. Leung, B. Hu, S. Harris, A. Brown, J. Gallicchio, H. Nguyen, Astrophys. J. 861, 66 (2018). https://doi.org/10.3847/1538-4357/aac954

    ADS  Article  Google Scholar 

  25. 25.

    I.M. Shoemaker, K. Murase, Phys. Rev. D 97(8), 083013 (2018). https://doi.org/10.1103/PhysRevD.97.083013

    ADS  Article  Google Scholar 

  26. 26.

    H. Yu, S.Q. Xi, F.Y. Wang, Astrophys. J. 860, 173 (2018). https://doi.org/10.3847/1538-4357/aac2e3

    ADS  Article  Google Scholar 

  27. 27.

    S. Boran, S. Desai, E.O. Kahya, Eur. Phys. J. C 79(3), 185 (2019). https://doi.org/10.1140/epjc/s10052-019-6695-6

    ADS  Article  Google Scholar 

  28. 28.

    R. Laha, Phys. Rev. D 100(10), 103002 (2019). https://doi.org/10.1103/PhysRevD.100.103002

    ADS  Article  Google Scholar 

  29. 29.

    N. Xing, H. Gao, J.J. Wei, Z. Li, W. Wang, B. Zhang, X.F. Wu, P. Mészáros, Astroph. J. 882(1), L13 (2019). https://doi.org/10.3847/2041-8213/ab3c5f

    ADS  Article  Google Scholar 

  30. 30.

    S. Boran, S. Desai, E.O. Kahya, R.P. Woodard, Phys. Rev. D 97(4), 041501 (2018). https://doi.org/10.1103/PhysRevD.97.041501

    ADS  Article  Google Scholar 

  31. 31.

    C. Yang, Y.C. Zou, Y.Y. Zhang, B. Liao, W.H. Lei, Mon. Not. R. Astron. Soc. 469, L36 (2017). https://doi.org/10.1093/mnrasl/slx045

    ADS  Article  Google Scholar 

  32. 32.

    J.J. Wei, X.F. Wu, Phys. Rev. D 99(10), 103012 (2019). https://doi.org/10.1103/PhysRevD.99.103012

    ADS  Article  Google Scholar 

  33. 33.

    S.X. Yi, Y.C. Zou, X. Yang, B. Liao, S.W. Wei, Mon. Not. R. Astron. Soc. 493(2), 1782 (2020). https://doi.org/10.1093/mnras/staa369

    ADS  Article  Google Scholar 

  34. 34.

    V.A. Kostelecký, S. Samuel, Phys. Rev. D 39, 683 (1989). https://doi.org/10.1103/PhysRevD.39.683

    ADS  Article  Google Scholar 

  35. 35.

    V.A. Kostelecký, R. Potting, Nucl. Phys. B 359, 545 (1991)

    ADS  Article  Google Scholar 

  36. 36.

    V.A. Kostelecký, R. Potting, Phys. Rev. D 51, 3923 (1995). https://doi.org/10.1103/PhysRevD.51.3923

    ADS  Article  Google Scholar 

  37. 37.

    G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Nature 393, 763 (1998). https://doi.org/10.1038/31647

    ADS  Article  Google Scholar 

  38. 38.

    D. Mattingly, Living Rev. Relativ. 8, 5 (2005). https://doi.org/10.12942/lrr-2005-5

    ADS  Article  Google Scholar 

  39. 39.

    R. Bluhm, Lect. Notes Phys. 702, 191 (2006). https://doi.org/10.1007/3-540-34523-X_8

    Article  Google Scholar 

  40. 40.

    G. Amelino-Camelia, Living Rev. Relativ. 16, 5 (2013). https://doi.org/10.12942/lrr-2013-5

    ADS  Article  Google Scholar 

  41. 41.

    J.D. Tasson, Rep. Progr. Phys. 77(6), 062901 (2014). https://doi.org/10.1088/0034-4885/77/6/062901

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    R. Gambini, J. Pullin, Phys. Rev. D 59(12), 124021 (1999). https://doi.org/10.1103/PhysRevD.59.124021

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    R.J. Gleiser, C.N. Kozameh, Phys. Rev. D 64(8), 083007 (2001). https://doi.org/10.1103/PhysRevD.64.083007

    ADS  Article  Google Scholar 

  44. 44.

    V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 87(25), 251304 (2001). https://doi.org/10.1103/PhysRevLett.87.251304

    ADS  Article  Google Scholar 

  45. 45.

    V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 97(14), 140401 (2006). https://doi.org/10.1103/PhysRevLett.97.140401

    ADS  Article  Google Scholar 

  46. 46.

    V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 99(1), 011601 (2007). https://doi.org/10.1103/PhysRevLett.99.011601

    ADS  Article  Google Scholar 

  47. 47.

    V.A. Kostelecký, M. Mewes, Astrophys. J. 689, L1 (2008). https://doi.org/10.1086/595815

    ADS  Article  Google Scholar 

  48. 48.

    V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 110(20), 201601 (2013). https://doi.org/10.1103/PhysRevLett.110.201601

    ADS  Article  Google Scholar 

  49. 49.

    I.G. Mitrofanov, Nature 426, 139 (2003). https://doi.org/10.1038/426139a

    ADS  Article  Google Scholar 

  50. 50.

    T. Jacobson, S. Liberati, D. Mattingly, F.W. Stecker, Phys. Rev. Lett. 93(2), 021101 (2004). https://doi.org/10.1103/PhysRevLett.93.021101

    ADS  Article  Google Scholar 

  51. 51.

    Y.Z. Fan, D.M. Wei, D. Xu, Mon. Not. R. Astron. Soc. 376, 1857 (2007). https://doi.org/10.1111/j.1365-2966.2007.11576.x

    ADS  Article  Google Scholar 

  52. 52.

    G. Gubitosi, L. Pagano, G. Amelino-Camelia, A. Melchiorri, A. Cooray, JCAP 8, 021 (2009). https://doi.org/10.1088/1475-7516/2009/08/021

    ADS  Article  Google Scholar 

  53. 53.

    P. Laurent, D. Götz, P. Binétruy, S. Covino, A. Fernandez-Soto, Phys. Rev. D 83(12), 121301 (2011). https://doi.org/10.1103/PhysRevD.83.121301

    ADS  Article  Google Scholar 

  54. 54.

    F.W. Stecker, Astropart. Phys. 35, 95 (2011). https://doi.org/10.1016/j.astropartphys.2011.06.007

    ADS  Article  Google Scholar 

  55. 55.

    K. Toma, S. Mukohyama, D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, Y. Morihara, T. Sakashita, T. Takahashi, Y. Wakashima, H. Yonemochi, N. Toukairin, Phys. Rev. Lett. 109(24), 241104 (2012). https://doi.org/10.1103/PhysRevLett.109.241104

    ADS  Article  Google Scholar 

  56. 56.

    D. Götz, S. Covino, A. Fernández-Soto, P. Laurent, Ž. Bošnjak, Mon. Not. R. Astron. Soc. 431, 3550 (2013). https://doi.org/10.1093/mnras/stt439

    ADS  Article  Google Scholar 

  57. 57.

    D. Götz, P. Laurent, S. Antier, S. Covino, P. D’Avanzo, V. D’Elia, A. Melandri, Mon. Not. R. Astron. Soc. 444, 2776 (2014). https://doi.org/10.1093/mnras/stu1634

    ADS  Article  Google Scholar 

  58. 58.

    H.N. Lin, X. Li, Z. Chang, Mon. Not. R. Astron. Soc. 463, 375 (2016). https://doi.org/10.1093/mnras/stw2007

    ADS  Article  Google Scholar 

  59. 59.

    F. Kislat, H. Krawczynski, Phys. Rev. D 95(8), 083013 (2017). https://doi.org/10.1103/PhysRevD.95.083013

    ADS  Article  Google Scholar 

  60. 60.

    A.S. Friedman, D. Leon, K.D. Crowley, D. Johnson, G. Teply, D. Tytler, B.G. Keating, G.M. Cole, Phys. Rev. D 99(3), 035045 (2019). https://doi.org/10.1103/PhysRevD.99.035045

    ADS  Article  Google Scholar 

  61. 61.

    J.J. Wei, Mon. Not. R. Astron. Soc. 485(2), 2401 (2019). https://doi.org/10.1093/mnras/stz594

    ADS  Article  Google Scholar 

  62. 62.

    V.A. Kostelecký, N. Russell, Rev. Mod. Phys. 83(1), 11 (2011). https://doi.org/10.1103/RevModPhys.83.11

    ADS  Article  Google Scholar 

  63. 63.

    S. Liberati, Class. Quantum Grav. 30(13), 133001 (2013). https://doi.org/10.1088/0264-9381/30/13/133001

    ADS  Article  Google Scholar 

  64. 64.

    I.I. Shapiro, Phys. Rev. Lett. 13, 789 (1964). https://doi.org/10.1103/PhysRevLett.13.789

    ADS  MathSciNet  Article  Google Scholar 

  65. 65.

    P.R. Kafle, S. Sharma, G.F. Lewis, J. Bland-Hawthorn, Astrophys. J. 761, 98 (2012). https://doi.org/10.1088/0004-637X/761/2/98

    ADS  Article  Google Scholar 

  66. 66.

    S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott, Astrophys. J. 692, 1075 (2009). https://doi.org/10.1088/0004-637X/692/2/1075

    ADS  Article  Google Scholar 

  67. 67.

    A.J. Barth, R. Sari, M.H. Cohen, R.W. Goodrich, P.A. Price, D.W. Fox, J.S. Bloom, A.M. Soderberg, S.R. Kulkarni, Astrophys. J. 584(2), L47 (2003). https://doi.org/10.1086/373889

    ADS  Article  Google Scholar 

  68. 68.

    D. Lazzati, S. Covino, S. di Serego Alighieri, G. Ghisellini, J. Vernet, E. Le Floch, D. Fugazza, S. Di Tomaso, D. Malesani, N. Masetti, E. Pian, E. Oliva, L. Stella, Astron. Astrophys. 410, 823 (2003). https://doi.org/10.1051/0004-6361:20031321

    ADS  Article  Google Scholar 

  69. 69.

    J. Villasenor et al., GRB Coord. Netw. 1471, 1 (2002)

    ADS  Google Scholar 

  70. 70.

    Y. Shirasaki et al., GRB Coord. Netw. 1565, 1 (2002)

    ADS  Google Scholar 

  71. 71.

    N. Mirabal, J.P. Halpern, R. Chornock, A.V. Filippenko, GRB Coord. Netw. 1618, 1 (2002)

    ADS  Google Scholar 

  72. 72.

    R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90(21), 211601 (2003). https://doi.org/10.1103/PhysRevLett.90.211601

    ADS  MathSciNet  Article  Google Scholar 

  73. 73.

    Planck Collaboration et al., ArXiv e-prints arXiv:1807.06209 (2018)

  74. 74.

    T. Jacobson, D. Mattingly, Phys. Rev. D 64(2), 024028 (2001). https://doi.org/10.1103/PhysRevD.64.024028

    ADS  MathSciNet  Article  Google Scholar 

  75. 75.

    T. Jacobson, D. Mattingly, Phys. Rev. D 70(2), 024003 (2004). https://doi.org/10.1103/PhysRevD.70.024003

    ADS  Article  Google Scholar 

  76. 76.

    C. Eling, T. Jacobson, Phys. Rev. D 69(6), 064005 (2004). https://doi.org/10.1103/PhysRevD.69.064005

    ADS  Article  Google Scholar 

  77. 77.

    B.Z. Foster, T. Jacobson, Phys. Rev. D 73(6), 064015 (2006). https://doi.org/10.1103/PhysRevD.73.064015

    ADS  MathSciNet  Article  Google Scholar 

  78. 78.

    M.L. McConnell, New Astron. Rev. 76, 1 (2017). https://doi.org/10.1016/j.newar.2016.11.001

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (grant Nos. 11673068, 11725314, and U1831122), the Youth Innovation Promotion Association (2017366), the Key Research Program of Frontier Sciences (grant Nos. QYZDB-SSW-SYS005 and ZDBS-LY-7014), and the Strategic Priority Research Program “Multi-waveband gravitational wave universe” (grant No. XDB23000000) of Chinese Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Wei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, JJ., Wu, XF. Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows. Eur. Phys. J. Plus 135, 527 (2020). https://doi.org/10.1140/epjp/s13360-020-00554-x

Download citation