Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems

Abstract

Since the ducts are important parts of the engineering facilities and entropy generation decreases the performance of such facilities, it is necessary to study the amount of entropy generation in these geometries in order to reach to maximum efficiency. In addition, the study of turbulent boundary layer flow in curved diffuser has significant importance. Therefore, the current work investigates the effects of curvature and adverse pressure gradient parameter on efficiency and entropy generation due to turbulent and viscosity dissipations in three curved diffusers with curvature ratios of 0.0113, 0.0161 and 0.023 for different adverse pressure gradient parameters of 0.48, 0.56, 0.62, 0.86 and 0.994. Results show that in order to design the curved diffusers to reach the maximum efficiency and minimum total entropy generation in air-conditioning systems, the lowest value of adverse pressure gradient parameter and the highest value of curvature radius should be considered, respectively. The total entropy generation on concave and convex walls decreases with increasing the adverse pressure gradient parameter, while by increasing the curvature radius, it decreases on convex wall and increases on concave wall. Moreover, the rate of increasing the total entropy on convex wall is more than concave wall at constant adverse pressure gradient parameter. Finally, it was found that with decreasing the adverse pressure gradient parameter and increasing the curvature radius, the efficiency increases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

A 1 :

The cross-sectional area at inlet region (m2)

A 2 :

The cross-sectional area at outlet region (m2)

C1:

The flow on the convex wall of the curved diffuser

C2:

The flow on the concave wall of the curved diffuser

k :

Turbulent kinetic energy (m2 s−2)

p :

Pressure (kg m−1 s−2)

p k :

Constant

R :

Centerline radius (mm)

S g,T :

Entropy generation due to fluctuation velocity (Wm−3 K−1)

S g,v :

Entropy generation due to mean flow dissipation (Wm−3 K−1)

S g :

Entropy generation (Wm−3 K−1)

T 0 :

Reference temperature (K)

t :

Time (s)

\( \overline{{u_{i}}}, \) \( \overline{{u_{j}}} \) :

Mean velocity (ms−1)

\( u_{i}^{\prime} \), \( u_{i}^{\prime} \),:

Fluctuation velocity (ms−1)

\( \bar{u} \),\( \bar{v} \),\( \bar{w} \) :

Mean velocity components (ms−1)

\( u^{\prime},v^{\prime},w^{\prime} \) :

Fluctuation velocity components (ms−1)

\( \overline{{u^{\prime} v^{\prime}}} \) :

Turbulent shear stress (m2 s−2)

Α1, α2α3 :

Constant

Β1, β2β3, β* :

Constant

β :

Adverse pressure gradient parameter

ɛ :

Turbulent dissipation (m2 s−2)

η :

Efficiency

θ :

Turning angle (°)

μ :

Dynamic viscosity (kg m−1 s−1)

μ t :

Turbulent viscosity (kg m−1 s−1)

μ eff :

Effective viscosity (kg m−1 s−1)

ϑ :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

\( \sigma_{\omega 1},\sigma_{\omega 2},\sigma_{k1},\sigma_{k2} \) :

Constant

\( \bar{\varphi} \) :

Entropy generation due to viscosity (wm−3)

\( \overline{{\varphi_{\theta}}} \) :

Entropy generation due to heat transfer (w km−3)

References

  1. 1.

    R. Gao, K. Liu, A. Li, Z. Fang, Z. Yang, B. Cong, Biomimetic duct tee for reducing the local resistance of a ventilation and air-conditioning system. Build. Environ. 129, 130–141 (2018)

    Google Scholar 

  2. 2.

    R. Gao, H. Li, A. Li, K. Liu, S. Yu, B. Deng, Applicability study of a deflector in ventilation and air conditioning duct tees based on an analysis of energy dissipation. J. Wind Eng. Ind. Aerodyn. 184, 256–264 (2019)

    Google Scholar 

  3. 3.

    L. Tong, J. Gao, Z. Luo, L. Wu, L. Zeng, G. Liu, Y. Wang, A novel flow guide device for uniform exhaust in a central air exhaust ventilation system. Build. Environ. 149, 134–145 (2019)

    Google Scholar 

  4. 4.

    R. Gao, K. Liu, A. Li, Z. Fang, Z. Yang, B. Cong, Study of the shape optimization of a tee guide van in a ventilation and air-conditioning duct. Build. Environ. 132, 345–356 (2018)

    Google Scholar 

  5. 5.

    S. Mahmud, R.A. Fraser, The second law analysis in fundamental convective heat transfer problems. Int. J. Therm. Sci. 42(2), 177–186 (2003)

    Google Scholar 

  6. 6.

    E. Lakzian, A. Masjedi, Slip effects on the exergy loss due to irreversible heat transfer in a condensing flow. Int. J. Exergy 14(1), 22–37 (2014)

    Google Scholar 

  7. 7.

    E. Lakzian, S. Shaabani, Analytical investigation of coalescence effects on the exergy loss in a spontaneously condensing wet-steam flow. Int. J. Exergy 16(4), 383–403 (2015)

    Google Scholar 

  8. 8.

    A. Bejan, A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 101(4), 718–725 (1979)

    Google Scholar 

  9. 9.

    P. Nag, N. Kumar, Second law optimization of convective heat transfer through a duct with constant heat flux. Int. J. Energy Res. 13(5), 537–543 (1989)

    Google Scholar 

  10. 10.

    A. Sahin, Second law analysis of laminar viscous flow through a duct subjected to constant wall temperature. J. Heat Transf. 120(1), 76–83 (1998)

    Google Scholar 

  11. 11.

    J. Guo, M. Xu, Y. Tao, X. Huai, The effect of temperature-dependent viscosity on entropy generation in curved square microchannel. Chem. Eng. Process. 52, 85–91 (2012)

    Google Scholar 

  12. 12.

    S. Jarungthammachote, Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux. Energy 35(12), 5374–5379 (2010)

    Google Scholar 

  13. 13.

    E. Amani, M. Nobari, A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature. Energy 36(8), 4909–4918 (2011)

    Google Scholar 

  14. 14.

    A. Bejan, Second law analysis in heat transfer. Energy 5(8–9), 720–732 (1980)

    ADS  Google Scholar 

  15. 15.

    H. Kucuk, Numerical analysis of entropy generation in concentric curved annular ducts. J. Mech. Sci. Technol. 24(9), 1927–1937 (2010)

    Google Scholar 

  16. 16.

    J. Guo, M. Xu, J. Cai, X. Huai, Viscous dissipation effect on entropy generation in curved square microchannels. Energy 36(8), 5416–5423 (2011)

    Google Scholar 

  17. 17.

    V. Narla, K. Prasad, J.R. Murthy, Second-law analysis of the peristaltic flow of an incompressible viscous fluid in a curved channel. J. Eng. Phys. Thermophys. 89(2), 441–448 (2016)

    Google Scholar 

  18. 18.

    L. Wang, F. Liu, Forced convection in slightly curved microchannels. Int. J. Heat Mass Transf. 50(5–6), 881–896 (2007)

    MATH  Google Scholar 

  19. 19.

    B.G. Shivaprasad, B.R. Ramaprian, Turbulence measurements in boundary layers along mildly curved surfaces. J. Fluids Eng. 100(1), 37–45 (1978)

    Google Scholar 

  20. 20.

    R.M. So, G.L. Mellor, Experiment on turbulent boundary layers on a concave wall. Aeronaut. Q. 26(1), 25–40 (1975)

    Google Scholar 

  21. 21.

    A. Khoshevis, S. Hariri, Calculation of turbulence intensities and shear stresses on concave surfaces by extending the low Reynolds turbulence model for curved walls. Int. J. Dyn. Fluids 3(2), 211–234 (2007)

    Google Scholar 

  22. 22.

    A. Noorani, G. El Khoury, P. Schlatter, Evolution of turbulence characteristics from straight to curved pipes. Int. J. Heat Fluid Flow 41, 16–26 (2013)

    Google Scholar 

  23. 23.

    P. Dutta, N. Nandi, Effect of Reynolds number and curvature ratio on single phase turbulent flow in pipe bends. Mech. Mech. Eng. 19(1), 5–16 (2015)

    Google Scholar 

  24. 24.

    J. Monty, Z. Harun, I. Marusic, A parametric study of adverse pressure gradient turbulent boundary layers. Int. J. Heat Fluid Flow 32(3), 575–585 (2011)

    Google Scholar 

  25. 25.

    Y. Nagano, M. Tagawa, T. Tsuji, Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer, in Turbulent Shear Flows 8 (Springer, Berlin, 1993), pp. 7–21

  26. 26.

    C.D. Aubertine, Reynolds number effects on an adverse pressure gradient turbulent boundary layer, dissertation of Standford university for the degree of doctor of philosophy (2004)

  27. 27.

    J.-H. Lee, H.J. Sung, Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101–131 (2009)

    ADS  MATH  Google Scholar 

  28. 28.

    G. Araya, L. Castillo, Direct numerical simulations of turbulent thermal boundary layers subjected to adverse streamwise pressure gradients. Phys. Fluids 25(9), 095107 (2013)

    ADS  Google Scholar 

  29. 29.

    Z. Harun, J.P. Monty, R. Mathis, I. Marusic, Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477–498 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  30. 30.

    A. Bobke, R. Vinuesa, R. Örlü, P. Schlatter, Large-eddy simulations of adverse pressure gradient turbulent boundary layers. J. Phys.: Conf. Ser. 708(1), 012012 (2016)

    MATH  Google Scholar 

  31. 31.

    H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, London, 2007)

    Google Scholar 

  32. 32.

    L. Davidson, Fluid Mechanics, Turbulent Flow and Turbulence Modeling. Accessed on 2015

  33. 33.

    F. Kock, H. Herwig, Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 47(10–11), 2205–2215 (2004)

    MATH  Google Scholar 

  34. 34.

    A.R. Mamouri, A.B. Khoshnevis, E. Lakzian, Entropy generation analysis of S825, S822, and SD7062 offshore wind turbine airfoil geometries. Ocean Eng. 173, 700–715 (2019)

    Google Scholar 

  35. 35.

    A.R. Mamouri, E. Lakzian, A.B. Khoshnevis, Entropy analysis of pitching airfoil for offshore wind turbines in the dynamic stall condition. Ocean Eng. 187, 106229 (2019)

    Google Scholar 

  36. 36.

    M. Yadegari, A.B. Khoshnevis, Numerical study of the effects of adverse pressure gradient parameter,turning angle and curvature ratio on turbulent flow in curved rectangular diffuser using entropy generation analysis, European physical journal plus, in press

  37. 37.

    C.S. Vila, R. Örlü, R. Vinuesa, P. Schlatter, A. Ianiro, S. Discetti, Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization. Flow Turbul. Combust. 99(3–4), 589–612 (2017)

    MATH  Google Scholar 

  38. 38.

    P. Nilakantan, On diffuser efficiency in compressible flow. Proc. Indian Acad. Sci. Sect. A 22(2), 67 (1945)

    Google Scholar 

  39. 39.

    H. Singh, B. Arora, Effect of area ratio on flow separation in annular diffuser, in Advances in Fluid and Thermal Engineering. (Springer, Berlin, 2019), pp. 297–305

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdolamir Bak Khoshnevis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadegari, M., Bak Khoshnevis, A. Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems. Eur. Phys. J. Plus 135, 534 (2020). https://doi.org/10.1140/epjp/s13360-020-00545-y

Download citation