Cosmic acceleration via derivative matter couplings

Abstract

We consider a modification of gravity via derivative matter couplings. We will consider a healthy higher-order Lagrangian for a scalar field which is constructed from the matter Lagrangian. Generally, the energy–momentum tensor is not conserved, leading to the fifth force. We will however show that the fifth force vanishes on top of the FRW background. Cosmological implications and the energy conditions will be considered in detail. Also we will perform the dynamical system analysis of the model and show that there exists a meta stable de Sitter fixed point which can be seen as a final stage of the universe evolution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    A.G. Riess et al., Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    ADS  Google Scholar 

  2. 2.

    S. Perlmutter et al., Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    ADS  Google Scholar 

  3. 3.

    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    ADS  Google Scholar 

  4. 4.

    L. Lombriser. arXiv:1901.08588 [gr-qc]

  5. 5.

    R.P. Woodard. arXiv:1506.02210 [hep-th]

  6. 6.

    M. Ostrogradsky, Mem. Ac. St. Petersbourg VI 4, 385 (1850)

    Google Scholar 

  7. 7.

    Virgo, Fermi-GBM, INTEGRAL, LIGO Scientific Collaboration, B.P. Abbott et. al., Astrophys. J. 848, L13 (2017)

  8. 8.

    P. Creminelli, F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017)

    ADS  Google Scholar 

  9. 9.

    J. Sakstein, B. Jain, Phys. Rev. Lett. 119, 251303 (2017)

    ADS  Google Scholar 

  10. 10.

    J. María Ezquiaga, M. Zumalacárregui, Phys. Rev. Lett. 119, 251304 (2017)

    ADS  Google Scholar 

  11. 11.

    V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic, Dordrecht, 2004)

    Google Scholar 

  12. 12.

    C. Armendariz-Picon, T. Damour, V. Mukhanov, Phys. Lett. B 458, 209 (1999)

    ADS  MathSciNet  Google Scholar 

  13. 13.

    S. Tsujikawa, Class. Quantum Gravity 30, 214003 (2013)

    ADS  Google Scholar 

  14. 14.

    J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Phys. Rev. Lett. 114, 211101 (2015)

    ADS  Google Scholar 

  15. 15.

    J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, G. Tasinato, JHEP 1612, 100 (2016). arXiv:1608.08135 [hep-th]

  16. 16.

    A. De Felice, S. Tsujikawa, Phys. Rev. Lett. 105, 111301 (2010)

    ADS  Google Scholar 

  17. 17.

    T. Kobayashi, Phys. Rev. D 81, 103533 (2010)

    ADS  Google Scholar 

  18. 18.

    F.P. Silva, K. Koyama, Phys. Rev. D 80, 121301 (2009)

    ADS  Google Scholar 

  19. 19.

    N. Chow, J. Khoury, Phys. Rev. D 80, 024037 (2009)

    ADS  Google Scholar 

  20. 20.

    A. De Felice, R. Kase, S. Tsujikawa, Phys. Rev. D 83, 043515 (2011)

    ADS  Google Scholar 

  21. 21.

    C. Burrage, C. de Rham, D. Seery, A.J. Tolley, JCAP 01, 014 (2011)

    ADS  Google Scholar 

  22. 22.

    R. Banerjee, S. Chakraborty, A. Mitra, P. Mukherjee, Phys. Rev. D 96, 064023 (2017)

    ADS  MathSciNet  Google Scholar 

  23. 23.

    M. Minamitsuji, Gen. Relativ. Gravit. 48, 26 (2016)

    ADS  Google Scholar 

  24. 24.

    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    ADS  Google Scholar 

  25. 25.

    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  26. 26.

    F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester, Rev. Mod. Phys. 48, 393 (1976)

    ADS  Google Scholar 

  27. 27.

    Z. Haghani, N. Khosravi, S. Shahidi, Class. Quantum Gravity 32, 215016 (2015)

    ADS  Google Scholar 

  28. 28.

    J.B. Jimenez, T.S. Koivisto, Class. Quantum Gravity 31, 135002 (2014)

    ADS  Google Scholar 

  29. 29.

    Y. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016)

    ADS  Google Scholar 

  30. 30.

    Z. Haghani, T. Harko, H.R. Sepangi, S. Shahidi, Phys. Rev. D 88, 044024 (2013)

    ADS  Google Scholar 

  31. 31.

    Z. Haghani, T. Harko, H.R. Sepangi, S. Shahidi, JCAP 10, 061 (2012)

    ADS  Google Scholar 

  32. 32.

    R. Ferraro, AIP Conf. Proc. 1471, 103 (2012)

    ADS  Google Scholar 

  33. 33.

    C. de Rham, Living Rev. Relativ. 17, 7 (2014)

    ADS  Google Scholar 

  34. 34.

    C. de Rham G. Gabadadze, A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011). arXiv:1011.1232 [hep-th]

  35. 35.

    K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012)

    ADS  Google Scholar 

  36. 36.

    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)

    ADS  MathSciNet  Google Scholar 

  37. 37.

    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)

    ADS  MathSciNet  Google Scholar 

  38. 38.

    R. Maartens, K. Koyama, Living Rev. Relativ. 13, 5 (2010)

    ADS  Google Scholar 

  39. 39.

    A. Einstein, Sitzungsberichte der Königlich Preussischen Akademie der Wis-senschaften (Berlin) (1919), p. 349

  40. 40.

    Z. Haghani, T. Harko, S. Shahidi, Phys. Dark Univ. 21, 27 (2018)

    Google Scholar 

  41. 41.

    P. Rastall, Phys. Rev. D 6, 3357 (1972)

    ADS  MathSciNet  Google Scholar 

  42. 42.

    T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  43. 43.

    F.G. Alvarenga, M.J.S. Houndjo, A.V. Monwanou, J.B.C. Orou, J. Mod. Phys. 4, 130 (2013)

    Google Scholar 

  44. 44.

    F.G. Alvarenga et al., Phys. Rev. D 87, 103526 (2013)

    ADS  Google Scholar 

  45. 45.

    H. Shabani, M. Farhoudi, Phys. Rev. D 88, 044048 (2013)

    ADS  Google Scholar 

  46. 46.

    M. Sharif, M. Zubair, JHEP 1312, 079 (2013)

    ADS  Google Scholar 

  47. 47.

    T. Harko, F.S.N. Lobo, Galaxies 2, 410 (2014)

    ADS  Google Scholar 

  48. 48.

    O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo, Phys. Rev. D 75, 104016 (2007)

    ADS  MathSciNet  Google Scholar 

  49. 49.

    Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi, Phys. Rev. D 88, 044023 (2013)

    ADS  Google Scholar 

  50. 50.

    S.D. Odintsov, D. Sáez-Gómez, Phys. Lett. B 725, 437 (2013)

    ADS  MathSciNet  Google Scholar 

  51. 51.

    N. Katırcı, M. Kavuk, Eur. Phys. J. Plus 129, 163 (2014)

    Google Scholar 

  52. 52.

    M. Roshan, F. Shojai, Phys. Rev. D 94, 044002 (2016)

    ADS  MathSciNet  Google Scholar 

  53. 53.

    J.D. Barrow, C. Board, Phys. Rev. D 96, 123517 (2017)

    ADS  MathSciNet  Google Scholar 

  54. 54.

    O. Akarsu, N. Katırcı, S. Kumar, Phys. Rev. D 97, 024011 (2018)

    ADS  MathSciNet  Google Scholar 

  55. 55.

    C.M. Will, Living Rev. Relativ. 17, 4 (2014). arXiv:1403.7377 [gr-qc]

    ADS  Google Scholar 

  56. 56.

    T. Harko, F.S.N. Lobo, E.N. Saridakis, Int. J. Geom. Methods Mod. Phys. 13, 1650102 (2016)

    MathSciNet  Google Scholar 

  57. 57.

    Z. Haghani, S. Shahidi. arXiv:1912.00601

  58. 58.

    Planck Collaboration, N. Aghanim, et. al. arXiv: 1807.06209

  59. 59.

    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Google Scholar 

  60. 60.

    T. Harko, F.S.N. Lobo, Extensions of f(R) Gravity Curvature-Matter Couplings and Hybrid Metric-Palatini Theory (Cambridge University Press, Cambridge, 2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mohammad Reze Razvan and Sheida Shahidi for very useful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahab Shahidi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haghani, Z., Shahidi, S. Cosmic acceleration via derivative matter couplings. Eur. Phys. J. Plus 135, 509 (2020). https://doi.org/10.1140/epjp/s13360-020-00534-1

Download citation