Lie symmetries and dynamics of exact solutions of dissipative Zabolotskaya–Khokhlov equation in nonlinear acoustics

Abstract

This study deals with symmetry reductions and invariant solutions of (2+1)-dimensional dissipative Zabolotskaya–Khokhlov equation. The equation governs the diffraction of sound beam propagation and describes nonlinear effects in stratified media with dissipation. The possible infinitesimal generators and commutative relation are obtained by means of the similarity transformations method. The method is based on invariance property of Lie groups, which results into the reduction in independent variables by one. Thus, twice reductions of Zabolotskaya–Khokhlov equation provide overdetermined equations, which lead to the invariant solutions under some limiting conditions. The obtained solutions are significant to explain diverse physical structures depending upon existing arbitrary functions and constants. In order to get precise insights, the numerical simulation is performed to the obtained solutions. Eventually, kink wave, parabolic, soliton and stationary profiles of the solutions are obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M. Bartuccielli, M. Pantano, T. Brugarino, Lett. Nuovo Cim. 37, 433 (1983)

    Article  Google Scholar 

  2. 2.

    J.K. Hunter, SIAM J. Appl. Math. 48, 16 (1988)

    Article  Google Scholar 

  3. 3.

    T. Taniuti, Wave Motion 12, 373 (1990)

    MathSciNet  Article  Google Scholar 

  4. 4.

    G. Valenti, Wave Motion 12, 97 (1990)

    MathSciNet  Article  Google Scholar 

  5. 5.

    G.M. Webb, G.P. Zank, J. Phys. A 23, 5465 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    T.S. Hart, M.F. Hamilton, J. Acoust. Soc. Am. 84, 1488 (1988)

    ADS  Article  Google Scholar 

  7. 7.

    P. Hariharan, M.R. Myers, R.K. Banerjee, Phys. Med. Biol. 52, 3493 (2007)

    Article  Google Scholar 

  8. 8.

    M.A. Averkiou, Y.S. Lee, M.F. Hamilton, J. Acoust. Soc. Am. 94, 2883 (1993)

    ADS  Google Scholar 

  9. 9.

    P.A. Clarkson, S. Hood, Eur. J. Appl. Math. 3, 381 (1992)

    Article  Google Scholar 

  10. 10.

    P.N. Sionóid, A.T. Cates, Proc. R. Soc. Lond. A 447, 270 (1994)

    Google Scholar 

  11. 11.

    M. Tajiri, J. Nonlinear Math. Phys. 2, 392 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    M.H.M. Moussa, R.M.E. Shikh, Physica A 371, 335 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    M.S. Bruzon, M.L. Gandarias, M. Torrisi, R. Tracinà, J. Math. Phys. 50, 103504 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    N. Taghizadeh, M. Mirzazadeh, F. Farahrooz, Appl. Math. Model. 35, 3991 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    B.Q. Li, S. Li, Y.L. Ma, Zeitschriftfür Naturforschung A 67, 607 (2012)

    ADS  Google Scholar 

  16. 16.

    M. Kumar, R. Kumar, A. Kumar, Comput. Math. Appl. 68, 454 (2014)

    MathSciNet  Article  Google Scholar 

  17. 17.

    A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer, Berlin, 2009)

    Google Scholar 

  18. 18.

    G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer, New York, 1974)

    Google Scholar 

  19. 19.

    P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)

    Google Scholar 

  20. 20.

    A.M. Wazwaz, L. Kaur, Nonlinear Dyn. 95, 2209 (2019)

    Article  Google Scholar 

  21. 21.

    A.M. Wazwaz, L. Kaur, Nonlinear Dyn. 97, 83 (2019)

    Article  Google Scholar 

  22. 22.

    S. Kumar, A.M. Wazwaz, D. Kumar, A. Kumar, Phys. Scr. 94, 115202 (2019)

    ADS  Article  Google Scholar 

  23. 23.

    S. Kumar, D. Kumar, A.M. Wazwaz, Phys. Scr. 94, 065204 (2019)

    ADS  Article  Google Scholar 

  24. 24.

    K. Sharma, R. Arora, A. Chauhan, Phys. Scr. 95, 055207 (2020)

    ADS  Article  Google Scholar 

  25. 25.

    D. Kumar, S. Kumar, Eur. Phys. J. Plus 135, 162 (2020)

    Article  Google Scholar 

  26. 26.

    T. Bakkyaraj, Eur. Phys. J. Plus 42, 4679 (2019)

    Google Scholar 

  27. 27.

    D.V. Tanwar, A.M. Wazwaz, Phys. Scr. 95, 065220 (2020)

    ADS  Article  Google Scholar 

  28. 28.

    G.G. Polat, T. Özer, J. Nonlinear Math. Phys. 27, 106 (2020)

    MathSciNet  Article  Google Scholar 

  29. 29.

    M. Kumar, D.V. Tanwar, R. Kumar, Comput. Math. Appl. 75, 218 (2018)

    MathSciNet  Article  Google Scholar 

  30. 30.

    M. Kumar, D.V. Tanwar, R. Kumar, Nonlinear Dyn. 94, 2547 (2018)

    Article  Google Scholar 

  31. 31.

    M. Kumar, D.V. Tanwar, Commun. Nonlinear Sci. Numer. Simul. 69, 45 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    M. Kumar, D.V. Tanwar, Int. J. Geom. Methods Mod. Phys. 16, 1950110 (2019)

    MathSciNet  Article  Google Scholar 

  33. 33.

    M. Kumar, D.V. Tanwar, Comput. Math. Appl. 76, 2535 (2018)

    MathSciNet  Article  Google Scholar 

  34. 34.

    M. Kumar, D.V. Tanwar, Pramana-J. Phys. 94, 23 (2020)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dig Vijay Tanwar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanwar, D.V., Wazwaz, A. Lie symmetries and dynamics of exact solutions of dissipative Zabolotskaya–Khokhlov equation in nonlinear acoustics. Eur. Phys. J. Plus 135, 520 (2020). https://doi.org/10.1140/epjp/s13360-020-00527-0

Download citation