Integrable negative flows of the Heisenberg ferromagnet equation hierarchy

Abstract

We study the negative flows of the hierarchy of the integrable Heisenberg ferromagnet model and their soliton solutions. The first negative flow is related to the so-called short pulse equation. We provide a framework which generates Lax pairs for the other members of the hierarchy. The application of the dressing method is illustrated with the derivation of the one-soliton solution.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    MathSciNet  Article  Google Scholar 

  2. 2.

    R. Beals, D. Sattinger, J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206 (1998)

    MathSciNet  Article  Google Scholar 

  3. 3.

    R. Beals, D. Sattinger, J. Szmigielski, Multi-peakons and a theorem of Stieltjes. Inv. Problems 15, L1–L4 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    A. Boutet de Monvel, D. Shepelsky, L. Zielinski, The short pulse equation by a Riemann-Hilbert approach. Lett. Math. Phys. 107, 1345–1373 (2017). arXiv:1608.02249 [nlin.SI]

    MathSciNet  Article  Google Scholar 

  5. 5.

    J.C. Brunelli, The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A 353, 475–478 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    R. Camassa, D. Holm, J. Hyman, A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  8. 8.

    Y. Chung, C.K.R.T. Jones, T. Schäfer, C.E. Wayne, Ultra-short pulses in linear and nonlinear media. Nonlinearity 18(3), 1351–1374 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    MathSciNet  Article  Google Scholar 

  10. 10.

    A. Constantin, Finite propagation speed for the Camassa–Holm equation. J. Math. Phys. 46, 023506 (2005). (4 pages)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  Article  Google Scholar 

  12. 12.

    A. Constantin, V. Gerdjikov, R. Ivanov, Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006). arXiv:nlin.SI/0603019

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    A. Constantin, R. Ivanov, J. Lenells, Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23, 2559–2575 (2010). https://doi.org/10.1088/0951-7715/23/10/012. arXiv:1205.4754 [nlin.SI]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    A. Constantin, R. Ivanov, Dressing method for the Degasperis–Procesi equation. Stud. Appl. Math. 138, 205–226 (2017). https://doi.org/10.1111/sapm.12149. arXiv:1608.02120 [nlin.SI]

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    A. Constantin, T. Kappeler, B. Kolev, P. Topalov, On geodesic exponential maps of the Virasoro group. Ann. Global Anal. Geom. 31, 155–180 (2007)

    MathSciNet  Article  Google Scholar 

  16. 16.

    A. Constantin, W. Strauss, Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  Article  Google Scholar 

  17. 17.

    C. Cotter, D. Holm, R. Ivanov, J. Percival, Waltzing peakons and compacton pairs in a cross-coupled Camassa–Holm equation. J. Phys. A Math. Theor. 44, 1–28 (2011). https://doi.org/10.1088/1751-8113/44/26/265205. arXiv:1103.3326 [nlin.CD]

  18. 18.

    A. Degasperis, M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, ed. by A. Degasperis, G. Gaeta (World Scientific, Singapore, 1999), pp. 23–37

    Google Scholar 

  19. 19.

    A. Degasperis, D. Holm, A. Hone, A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1461–1472 (2002)

    MathSciNet  Google Scholar 

  20. 20.

    A. Degasperis, D. Holm, A. Hone, Integrable and non-integrable equations with peakons, in Nonlinear Physics: Theory and Experiment, ed. by M. Boiti, et al. (World Scientific Publishing, Singapore, 2007), pp. 37–43

    Google Scholar 

  21. 21.

    J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)

    MathSciNet  Article  Google Scholar 

  22. 22.

    L. Faddeev, L. Takhtadjan, The Hamiltonian Approach to Soliton Theory (Springer, Berlin, 1987)

    Google Scholar 

  23. 23.

    B.-F. Feng, Complex short pulse and coupled complex short pulse equations. Physica D 297, 62–75 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    A.S. Fokas, On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    A. Fokas, B. Fuchssteiner, On the structure of symplectic operators and hereditary symmetries. Lett. Nuovo Cimento 28, 299–303 (1980)

    MathSciNet  Article  Google Scholar 

  26. 26.

    V.S. Gerdjikov, R.I. Ivanov, A.A. Stefanov, Riemann–Hilbert problem, integrability and reductions. J. Geom. Mech. 11, 167–185 (2019). https://doi.org/10.3934/jgm.2019009. arXiv:1902.10276 [nlin.SI]

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    V. Gerdjikov, G. Vilasi, A. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, vol. 748 (Springer, Berlin, 2008)

    Google Scholar 

  28. 28.

    V.S. Gerdjikov, A.B. Yanovski, Gauge covariant theory of the generating operator. I. Commun. Math. Phys. 103, 549–568 (1986). https://doi.org/10.1007/BF01211165

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    V.S. Gerdjikov, A.B. Yanovski, Gauge covariant formulation of the generating operator. 2. Systems on homogeneous spaces. Phys. Lett. A 110, 53–58 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    D. Henry, Compactly supported solutions of the Camassa–Holm equation. J. Nonlinear Math. Phys. 12, 342–347 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    D. Henry, D. Holm, R. Ivanov, On the persistence properties of the cross-coupled Camassa–Holm system. J. Geom. Symmetry Phys. 32, 1–13 (2013). arXiv:1311.2127 [math.AP]

    MathSciNet  MATH  Google Scholar 

  32. 32.

    D. Holm, R. Ivanov, Smooth and peaked solitons of the CH equation. J. Phys. A Math. Theor. 43, 1–18 (2010). https://doi.org/10.1088/1751-8113/43/43/434003. arXiv:1003.1338 [nlin.CD]

  33. 33.

    D.D. Holm, R.I. Ivanov, Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J. Phys. A Math. Theor. 43, 1–20 (2010). https://doi.org/10.1088/1751-8113/43/49/492001. arXiv:1009.5368 [nlin.SI]

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    D. Holm, T. Schmah, C. Stoica, Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions (Oxford University Press, Oxford, 2009)

    Google Scholar 

  35. 35.

    A.N.W. Hone, J.P. Wang, Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Probl. 19, 129–145 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    A.N.W. Hone, V. Novikov, Jing Ping Wang, Generalizations of the short pulse equation. Lett. Math. Phys. 108, 927–947 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  37. 37.

    A.N.W. Hone, Jing Ping Wang, Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 41, 1–10 (2008). https://doi.org/10.1088/1751-8113/41/37/372002

    Article  Google Scholar 

  38. 38.

    A.N.W. Hone, H. Lundmark, J. Szmigielski, Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa–Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289 (2009)

    MathSciNet  Article  Google Scholar 

  39. 39.

    R. Ivanov, T. Lyons, Dark solitons of the Qiao’s hierarchy. J. Math. Phys. 53, 123701 (2012). arXiv:1211.4249 [nlin.SI]

    ADS  MathSciNet  Article  Google Scholar 

  40. 40.

    R. Ivanov, T. Lyons, N. Orr, Camassa–Holm Cuspons, Solitons and their interactions via the dressing method. J. Nonlinear Sci. 30(1), 225–260 (2020). arXiv:1908.00980 [nlin.SI]

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    MathSciNet  Article  Google Scholar 

  42. 42.

    J. Lenells, A.S. Fokas, On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity 22, 11–27 (2009). https://doi.org/10.1088/0951-7715/22/1/002

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    H. Lundmark, J. Szmigielski, Multi-peakon solutions of the Degasperis–Procesi equation. Inverse Probl. 19, 1241–1245 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    Y. Matsuno, The \(N\)-soliton solution of the Degasperis–Procesi equation. Inverse Probl. 21, 2085–2101 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  45. 45.

    Y. Matsuno, Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit. Inverse Probl. 21, 1553–1570 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    Y. Matsuno, A novel multi-component generalization of the short pulse equation and its multisoliton solutions. J. Math. Phys. 52, 123702 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    V. Novikov, Generalizations of the Camassa-Holm equation. J. Phys. A Math. Theor. 42, 1–14 (2009). https://doi.org/10.1088/1751-8113/42/34/342002

    MathSciNet  Article  MATH  Google Scholar 

  48. 48.

    Z. Qiao, A new integrable equation with cuspons and \(W/M\)-shape-peaks solitons. J. Math. Phys. 47, 112701-1-112701-9 (2006). https://doi.org/10.1063/1.2365758

  49. 49.

    Z. Qiao, New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and \(M/W\)-shape peak solitons. J. Math. Phys. 48, 082701-1-082701-20 (2007). https://doi.org/10.1063/1.2759830

  50. 50.

    Z. Qiao, L. Liu, A new integrable equation with no smooth solitons. Chaos Solitons Fractals 41, 587–593 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  51. 51.

    T. Schäfer, C.E. Wayne, Propagation of ultra-short optical pulse in nonlinear media. Physica D 196, 90–105 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    V.E. Zakharov, A.B. Shabat, A scheme for integrating nonlinear evolution equations of mathematical physics by the inverse scattering problem. I, Funkts. Anal. Prilozhen. 8, 43–53 (1974). English translation: Funct. Anal. Appl. 8, 226–235 (1974)

  53. 53.

    V.E. Zakharov, A.B. Shabat, Integration of nonlinear equations of mathematical physics by the method of inverse scattering II., Funkts. Anal. Prilozhen, 13, 13–22 (1979). English translation: Funct. Anal. Appl. 13, 166–174 (1979)

Download references

Acknowledgements

The author is thankful to Prof. V. Gerdjikov for many useful discussions and to an anonymous referee for their valuable suggestions and comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rossen I. Ivanov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanov, R.I. Integrable negative flows of the Heisenberg ferromagnet equation hierarchy. Eur. Phys. J. Plus 135, 513 (2020). https://doi.org/10.1140/epjp/s13360-020-00524-3

Download citation